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I wish to begin by thanking the organizers for inviting
me to present at this workshop. It is my pleasure to
be here, if only on zoom.
My first time in South Africa was 50 years ago, for my
honeymoon. And I am pleased to say that my wife and
I are still together, and now have three grandchildren.

I was honoured to serve as Acting President of the
University of South Australia when my university
conferred an Honorary Doctorate on Nelson Mandela.

The research I shall speak on today is with an early
career researcher who obtained his PhD in South
Africa, was a teaching assistant at AIMS, and will
take up a university position in South Africa in 2024.
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Most of the results in this presentation appear in the
articles:

• Taboka Prince Chalebgwa and Sidney A. Morris,
“Topology Meets Number Theory”,
American Mathematical Monthly, (2024).

• Taboka Prince Chalebgwa and Sidney A. Morris,
Sin, cos, exp, and log of Liouville numbers,
Bulletin of the Australian Mathematical Society,
(2023), 108 (1), 81–85. (Open access)

• Taboka Prince Chalebgwa and Sidney A. Morris,
Erdős properties of the Mahler set S, Bull.
Austral. Math. Soc. (2023), 108(3), 504–510.
(Open access)

3



Subsets of the set R of all real numbers

• Gδ-set: countable intersection of open sets;

• Fσ-set: countable union of closed sets;

• Borel set: can be constructed from open sets

using countable intersections, countable unions,

and relative complements

(B \A is the relative complement of A in B);

• analytic set: continuous image of a Borel set.
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2c subsets of R

2c Lebesgue measurable subsets of R

c analytic sets

c Borel sets

c Gδ-sets c Fσ-sets

c open sets & c closed sets
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In the time available, I plan to discuss 8 topological
& metric space and 10 number theory “concepts”.

First the topological concepts we shall mention:

(1) homeomorphism;

(2) dense set;

(3) Gδ-space;

(4) Borel set;

(5) analytic space;

(6) Hausdorff dimension (a metric space concept);

(7) Cantor space, G (named after Georg Cantor
(1845–1918))

(8) topological space P of real irrational numbers.
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From Number Theory:

(1) the set P of all real irrational numbers;

(2) the set T of all real transcendental numbers;

(3) the set Q of rational numbers;

(4) the set A of real algebraic numbers;

(5) the set R of all real numbers;

(6) algebraically independence;

(7) transcendence basis;

(8) irrationality exponent;

(9) Liouville numbers L;

(10) Mahler sets A, S, T , U .
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In 1844 Joseph Liouville (1809–1882) was the
first to prove that transcendental numbers exist.
Indeed, he introduced an uncountable set L of real
transcendental numbers, known as Liouville numbers.

The first example was the Liouville constant

` =
∞∑
n=1

10−n!; that is the real number with the digit

in the nth decimal place equal to 0, unless n = k!,
k = 1,2, . . . , in which case it equals 1.

We note that L is dense in R, is uncountable but
has Lebesgue measure equal to zero and is totally
disconnected. (In fact it has Hausdorff dimension
equal to zero.) So the set L is some sense“small”.
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In his book “Joseph Liouville

1809–1882, Master of Pure and

Applied Mathematics” Jersper

Lützen claims Liouville was

the most important French

mathematician in the generation

between Évariste Galois (1811–

1832) and Charles Hermite

(1822–1901).
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Definition 1. A real number ξ is called a

Liouville number if for every positive integer n,

there exists a pair of integers (p, q) with q > 1,

such that

0 <

∣∣∣∣∣ξ − pq
∣∣∣∣∣ < 1

qn
.

We see that the Liouville constant ` is a Liouville

number.

Our first theorem, proved by Paul Erdős (1913–1996)

in 1962, is surprising in that L is a small set
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This photo was taken by Sid Morris in 1979 when he

was visiting the University of Calgary. Paul Erdős was

visiting his friend and colleague Richard Guy.
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Definition 2. Let X be a subset of R. The set
X is said to have the Erdős property if for each
r ∈ R there exist x1, x2 ∈ X such that r = x1 + x2.
The set X is said to have the multiplicative Erdős
property if for every s ∈ R, s > 0 there exist
x3, x4 ∈ X such that s = x3 · x4.

Theorem 1. The set L has the Erdős property

and the multiplicative Erdős property. Indeed if X

is any dense Gδ-subset of R then it has the Erdős

property and the multiplicative Erdős property.
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It follows from the Baire Category Theorem that the

intersection of any two (or even a countable number

of) dense Gδ-subsets of R is a Gδ-subset of R.

This result immediately yields Theorem 2.

Theorem 2. [CM] Every dense Gδ-subset of R
contains an uncountable subset of L.

A purely topological property of a set =⇒ it contains

an uncountable number of transcendental numbers.
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We now recall a beautiful characterization of the
space P of all irrational real13 numbers. This
result can be found in the 2001 book “The Infinite-
Dimensional Topology of Function Spaces” by John
van Mill.

Theorem. The space P of all irrational real numbers
is topologically the unique nonempty, separable,
metrisable, topologically complete, nowhere locally
compact, and zero-dimensional space (where a
topological space is said to be nowhere locally
compact if no point of it has a neighbourhood with
compact closure.)
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Theorem 3. Every dense Gδ-subset of R is

homeomorphic to P and to Nℵ0.

In particular, this is the case for the set T of all

real transcendental numbers and for L.
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Theorem 3. Every dense Gδ-subset of R is

homeomorphic to P. In particular, this is the case

for the set T of all real transcendental numbers

and for L.

Observe that set P contains the set L and the
cardinality of P \ L is c. This immediately gives us:

Theorem 4. [CM] Every dense Gδ-subset X of R
contains a dense Gδ-subset Y of R such that the

set X \ Y has cardinality c.

This answers a question of Erdős.
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Erdős searched for a proper subset of L which has
the Erdős property. From Theorem 4 we know that
L contains a chain L1, L2, . . . , Ln, . . . such that

L ⊃ L1 ⊃ L2 ⊃ · · · ⊃ Ln ⊃ . . .
with each Ln being a dense Gδ-subset of R and so
having the Erdős property. So there is no smallest
set with the Erdős property. Indeed as L \ L1 has
cardinality c, if Y is any of the 2c subsets of L \ L1,
then L1 ∪ Y has the Erdős property.

Theorem 5. [CM] There exist 2c-subsets of L
with the Erdős property.
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The Gelfond-Schneider Theorem (1934) says: if a and
b are (complex) algebraic numbers with a 6= 0,1 and
b not a rational number, then ab is a transcendental
number. In 2023 Diego Marques and Marcelo Oliveira
extended this to when b is a Liouville number. By
contrast:

Theorem 6. [CM ] If s is any positive real number

with s 6= 1, then there exist a, b ∈ L, with a, b > 0,

such that s = ab. Indeed, if X is any dense Gδ-

subset of R, then s = x1
x2, for some x1, x2 ∈ X.

Further, X can be replaced by any subset of R of

full measure, such as the set of normal numbers.
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Theorem 6A. [CM ] If s is any positive real number

with s 6= 1, then there exist a, b ∈ L, with a, b > 0,

such that s = ab.

Proof.

If s is any positive real number such that s 6= 1, put

r = 1
loge(s)

. So s = exp 1
r . Then f(x) = r loge(x) is a

homeomorphism of (0,∞) onto (−∞,∞).
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Proof. If s is any positive real number such that s 6= 1,

put r = 1
loge(s)

. So s = exp 1
r . Then f(x) = r loge(x)

is a homeomorphism of (0,∞) onto (−∞,∞).

The set L+ of positive numbers in L is L ∩ (0,∞)

and is a dense Gδ-subset of (0,∞). Then f(L+) is a

dense Gδ-subset of the set of all real numbers, and so

f(L+) contains a dense Gδ subset L0 of the set of all

Liouville numbers.

So for any l2 ∈ L0, there is an l1 ∈ L+ such that

f(l1) = r loge(l1) = l2.
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Proof. If s is any positive real number such that s 6= 1,
put r = 1

loge(s)
. So s = exp 1

r . Then f(x) = r loge(x)
is a homeomorphism of (0,∞) onto (−∞,∞).

The set L+ of positive numbers in L is L ∩ (0,∞)
and is a dense Gδ-subset of (0,∞). Then f(L+) is
a dense Gδ-subset of the set of all real numbers, and
so f(L+) contains a dense Gδ subset L0 of the set of
all Liouville numbers. So for any l2 ∈ L0, there is an
l1 ∈ L+ such that f(l1) = r loge(l1) = l2.

As l2 is a Liouville number, so too is b = 1
l2

.

Thus 1
r = loge(a

b), where a = l1.
Hence exp(1

r) = ab = s, as required.
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It is clear from the proof of the previous theorem,

that for each positive real number s 6= 1, there is

an uncountable number of different pairs (a, b) which

satisfy the theorem, since l2 can be chosen to be any

member of the set L0, which is a dense Gδ-subset of

L and hence also of R, and so is uncountable.
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In his influential book“Transcendental

Number Theory” Fields Medalist Alan

Baker (1939–2018) introduces the

chapter on Mahler’s Classification as

follows: “A classification of the set

of transcendental numbers into three

distinct aggregates, termed S-, T -

, and U-numbers, was introduced

by Mahler in 1932, and it has proved to be of

considerable value in the general development of the

subject.”
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Kurt Mahler (1903–1988) was initially
interested in proving that π and e were
not Liouville numbers. He partitioned
the complex numbers into four classes
S-numbers, T -numbers, U-numbers
and complex A-numbers. The set of
all Liouville numbers is a proper subset
of U . Then it was shown that e is an
S-number and π is either an S-number or a T -number.
So neither e nor π is a Liouville number.
(It is still not known whether π is a T -number. If it
is, then e + π is transcendental. However, today it is
not known whether it is even irrational.)
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Given a polynomial P (X) ∈ C[X], the height of P ,
denoted by H(P ), is the maximum of the absolute
values of the coefficients of P .
Given a complex number ξ, a positive integer n, and
a real number H ≥ 1, we define the quantity

wn(ξ,H) = min{|P (ξ) |: P (X) ∈ Z[X], H(P ) ≤ H,
deg(P ) ≤ n, P (ξ) 6= 0}.

We set wn(ξ) = lim sup
H→∞

− logwn(ξ,H)

logH
and

w(ξ) = lim sup
n→∞

wn(ξ)

n
.

Do wn(ξ) & w(ξ) = 0, ∞, or something in-between?
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Focussing on the set R of real numbers, Kurt Mahler

partitions the set as follows:

Definition 3. Let ξ be a real number. The

number ξ is

(i) an A-number if w(ξ) = 0,

(ii) an S-number if 0 < w(ξ) <∞,

(iii) a T -number if w(ξ) = ∞ and wn(ξ) < ∞ for

any n ≥ 1,

(iv) a U-number if w(ξ) = ∞ and wn(ξ) = ∞ for

all n ≥ n0, for some positive integer n0.
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The A-numbers are the algebraic numbers and there
exist an infinity of A-numbers, S-numbers, U-numbers
and T -numbers.

The set L of Liouville numbers is a proper subset of
the set of U-numbers.

It was an open question for 36 years on whether the
set of T -numbers is non-empty. It was answered in
1970 in the positive by Wolfgang M. Schmidt who
won the Frank Nelson Cole Prize in Number Theory
for work on Diophantine Approximation.

The set of S-numbers has full Lebesgue measure,
while the set of U-numbers, T -numbers, and A-
numbers each have zero Lebesgue measure.
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Definition 4. A subset S of a field K is

said to be algebraically independent over K if

the elements of S do not satisfy any non-trivial

polynomial equation with coefficients in K.

The following theorem of Mahler records a

fundamental property of the Mahler classes.

Theorem 7. If ξ, η ∈ R are algebraically

dependent, then they belong to the same Mahler

class.
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The next beautiful theorem was proved using Mahler
classes and the previous theorem.

Theorem 8. [CM] For any (real or complex) U-

number α, in particular for α any Liouville number,

all of the following are transcendental numbers:

eα, logeα, sinα, cosα, tanα, sinhα, coshα,

tanhα

and the inverse functions evaluated at α of

the listed trigonometric and hyperbolic functions,

noting that wherever multiple values are involved,

each such value is transcendental.
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In 1919 Felix Hausdorff (1868–1942) introduced the

notion of Hausdorff dimension of a metric space.

A surprising feature of Hausdorff dimension is that it

can have values which are not integers. This topic

was developed by Abram Samoilovitch Besicovitch

(1891–1970) a decade or so later, but came into

prominence in the 1970s with the work ofBenoit

Mandelbrot (1924–2010) on what he called fractal

geometry and which spurred the development of chaos

theory. Fractals and chaos theory have been used in

a very wide range of disciplines including economics,

finance, meteorology, physics, and physiology.
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Hausdorff, Besicovitch, Mandelbrot
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Definition 5. Let X be a metric space, S ⊂ X

and d ∈ [0,∞).

Hd
δ (S) = inf


∞∑
i=1

(diam Ui)
d :

∞⋃
i=1

⊇ S, diamUi < δ


where the infimum is taken over all countable

covers U of S.

The restriction of Hd(S) = lim
δ→0

Hd
δ (S) to

measurable sets is said to be the d-dimensional

Hausdorff measure.

The Hausdorff dimension is defined to be

inf{d ≥ 0 : Hd(X) = 0}.
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Theorem 9. [Ki, H. (1995), Proc. Amer. Math.

Soc.] Each of the Mahler sets is a Borel set.

The following powerful theorem combines the main

result in 2002 of the paper “Hausdorff dimension,

analytic sets and transcendence” by Gerald A Edgar

and C. Miller in Real Anal. Exch. and a standard

result from topology.
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Theorem 10. If X is an uncountable analytic

subset of R, then it has a subspace homeomorphic

to G. In particular, X has cardinality c.

If Y is an analytic subset of R with finite positive

Hausdorff dimension, then it has cardinality c

and contains a maximal algebraically independent

subset of R (that is a transcendence basis for R).

34



Definition 5. Let ξ be a real number. Then ξ is

said to have irrationality exponent m(ξ) if m(ξ)

is the infimum of the set R of all m such that

0 <

∣∣∣∣∣ξ − pq
∣∣∣∣∣ < 1

qm

has at most finitely-many solutions p
q with p ∈ Z

and q ∈ N. If R = ∅, then ξ is said to have infinite

irrationality exponent (which happens only for

Liouville numbers).

It is routine to prove that each set of real numbers of
irrationality exponent m ∈ (2,∞) is analytic.
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The following theorem of Vojtĕch Jarńık (1897–1970)
dates back almost 100 years, to 1929.

Theorem 11. The set of real numbers of

irrationality exponent equal to 2 has full Lebesgue

measure. The set of real numbers of irrationality

exponent m ∈ (2,∞) has Lebesgue measure 0 and

Hausdorff dimension equal to 2
m.
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Mahler had expressed an interest
in the intersection of the middle-
third Cantor set G with other
sets. There is also a significant
amount of literature on the
intersection of the middle-third
Cantor set with translations of
it because, since Jules Henri
Poincaré (1854–1912) in the
late 1800s, it plays a role
in studying nonlinear dynamical
systems. We touch upon a couple of results on
intersections with the middle-third Cantor set.
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Theorem 12. [CM] For each m ∈ [2,∞), let Em
be the set of real numbers of irrationality exponent

equal to m. Then G∩Em has cardinality c and has

subspace homeomorphic to G.

For the Mahler set S, G ∩ S, is (infinite and) a

dense subset of G.
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Theorem 13. [CM] The Cantor-Liouville set G∩L
has cardinality c. Further, G ∩ L has a subspace

homeomorphic to G.

Indeed for any q ∈ Q, the set (q + G)
⋂
L has

cardinality c and has a subspace homeomorphic to

G.
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Finally, observing that we have shown that there exist

2c subsets of L which have Lebesgue measure zero and

have the Erdős property, we complement this with the

following theorem:

Theorem 14. Let m ∈ [0,∞). Then there exist

2c dense subsets W of S each of Lebesgue measure

m such that W has the Erdős property and no two

of these W are homeomorphic. There also exist

2c dense subsets of S which have full Lebesgue

measure, and no two of these are homeomorphic.
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We note that Theorem 14 remains true if we consider

the class of complex S-numbers and replace the Erdős

property by the the complex Erdős property that

every complex number is the sum of two numbers

from the set W .

We leave as an Open Question whether Theorem 14

is true if the Mahler class S is replaced by the Mahler

class T .
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Dankie
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