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Introduction

A proposition that lists conditions on topological groups G and H such that a
surjective morphism f :G→ H is an open map is called an Open Mapping Theorem.
The morphism f factors in the form f = f ′ ◦ q with a quotient morphism q:G→
G/ ker f and a bijective morphism f ′:G/ ker f → H, and f is open if and only
if f ′ has a continuous inverse and thus is an isomorphism of topological groups.
If among the conditions formulated for the domain group G are those that are
preserved by passage to quotients, then this simple remark reduces the search for
Open Mapping Theorems to the search for conditions on a bijective morphism
f :G→ H to be an isomorphism of topological groups.

Example 0.1. If G is the additive group of real numbers with the discrete
topology, and H = R, this same group with its natural topology, then the identity
map gives us an example of a bijective morphism between real abelian Lie groups
which fails to be open. ut

There is a considerable body of literature, notably in functional analysis on
Open Mapping Theorems and their corollaries. Let us survey what is known on
Open Mapping Therems for topological groups. In the classical situation we can
often cite references for the proofs. The following is elementary:

0.2. Lemma. A surjective morphism f :G→ H of topological groups is open
if and only if G has arbitrarily small identity neighborhoods U such that the interior
of f(U) is not empty.

Proof. See for instance [5]. ut

We shall agree that all topological groups considered here are Hausdorff spaces.
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1. Countability at Work

In all classical Open Mapping Theorems some sort of countability is present. We
shall observe this throughout the first part of our discourse.

Topological Vector Spaces

Standard texts on functional analysis have the following
Proposition 1.1. (The Classical Open Mapping Theorem) Let f :G → H be a
continuous linear map between complete first countable topological vector spaces,
then f is open.

Lie Groups

By a Lie group we understand a real Lie group as modelled on a Banach man-
ifold as defined by Bourbaki [2], Ch.III, §1, no 1, Définition 1, or in textbooks
or monographs like for instance [6].

1.2. Theorem. (The Open Mapping Theorem for Lie Groups) A surjective
morphism f :G→ H of topological groups between connected Lie groups is open if
G is separable.

Proof. There is a commuting diagram of continuous functions

L(G)
L(f)−−−−→ L(H)

expG

y yexpH

G −−−−→
f

H.

The Lie algebras are Banach spaces with respect to suitable norms and L(f) is
an operator between Banach spaces. The exponential functions implement local
homeomorphisms at zero. Therefore, in view of Lemma 0.2, f is open if and only
if L(f) is open. By the Classical Open Mapping Theorem 1.1, this is the case iff
L(f) is surjective. This in turn is true if every one-parameter subgroup of H lifts,
that is, if for every morphism Y : R → H there is a morphism X: R → G such
that Y = f ◦X. Suppose that this fails for some Y , then an elementary argument
shows that one finds an open identity neighborhood U of G and a δ > 0 such that
for 0 ≤ r < s < δ one has Y (r)f(U) ∩ Y (s)f(U) = ∅ (see e.g. [6], 5.52). Then
{f−1(Y (r))U : 0 ≤ r < δ} is an uncountable set of nonempty disjoint open subsets
of G, contradicting the separability of G. ut

Example 1.3. Let G = `1(Rd) the Banach space of all real tuples (xr)r∈R such
that the family (|xr|)r∈R is summable and let this sum designate the norm. The
tuples

er = (δrs)s∈R, δrs =
{

1 if r = s,
0 otherwise,

generate a free discrete subgroup. In the product Banach space G×R the subgroup
D generated by the family {(er,−r) | r ∈ R} is discrete and free. Set H = E×R

D
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and define f :G → H, f(x) = (x, 0) + D. Then f is a continuous surjective
homomorphism of Lie groups. We may identify L(G) with G and expG with the
identity functions; similarly we may take L(H) = G×R and for expH the quotient
map. Then L(f):G → G × R is given by L(f)(x) = (x, 0) and is not surjective.
The one-parameter group t 7→ (0, t) + D : R→ H does not lift. The morphism f
fails to be open. ut

Polish Groups

In the presence of completeness of G and a countability condition on G, Lemma
0.2 can be strengthened in a significant way:

1.4. Lemma. If G is a complete first countable topological group then a
surjective morphism f :G → H is open if and only if G has arbitrarily small
identity neighborhoods U such that the interior of f(U) is not empty.

Proof. One adjusts a portion of the proof of the Classical Open Mapping Theorem
to this situation. This is done for instance in the lecture notes [5], Theorem 3.2.ut

Let us call a space inexhaustible if it cannot be a countable union of nowhere
dense subsets. Certainly any Baire space is inexhaustible and by the Baire category
theory any locally compact space and any locally completely metrizable space is
inexhaustible. (See for instance [1], Chap. IX, §5, no 3, Theorem 1) A topological
space is called Polish if it is completely metrizable and has a countable basis for
its topology. With the aid of Lemma 1.4 one then obtains

1.5. Theorem. A surjective morphism f :G → H of topological groups is
open if G is Polish and H is inexhaustible. In particular, a surjective morphism
of Polish groups is open. ut

Notice that the Lie groups G and H of Example 1.3 are completely metrizable
but fail to be Polish. Also observe, that the Classical Open Mapping Theorem 1.1
is not implied by Theorem 1.5.

Compactness and the Open Mapping Theorem

A topological space is called σ-compact if it is a countable union of compact
subsets. An inexhaustible σ-compact group is locally compact.

1.6. Theorem. A surjective morphism f :G → H is open if G is σ-compact
and H is inexhaustible.

Proof. (H. Glöckner) Since a surjective continuous image of a σ-compact is σ-
compact is suffices to consider bijective f . Let G =

⋃∞
n=1 Cn for compact subsets

Cn. Then H =
⋃∞

n=1 f(Cn) and the f(Cn) are compact, hence closed. Since H is
inexhaustible there is an N such that f(CN ) has an inner point h. The restriction
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and corestriction f |CN : CN → f(CN ) is a homeomorphism as CN is compact.
Let j:CN → G be the inclustion. Now f−1|f(CN ) = j ◦ f(CN )−1 : f(CN )→ G is
continuous, and f(CN ) is a neighborhood of h ∈ H. Thus f−1 is a homomorphism
which is continuous at a point of its domain and is therefore continuous. ut

Usually the texts require that G is locally compact such as [3], p. 42, Theorem
5.29, but Glöckner observed that this is not necessary. Of course from hindsight
it follows from the hypotheses of Theorem 1.6 that G/ ker f ∼= H is necessarily
locally compact.

1.7. Corollary. (The Open Mapping Theorem for Locally Compact Groups)
A surjective morphism f :G → H of locally compact groups is open if G is σ-
compact. ut

Example 0.1 shows that this fails without the countability condition of σ-
compactness. The identity morphism of the discrete additive group of rationals
onto Q with its natural topology shows that a continuous bijective morphism
from a σ-compact locally compact to a metrizable topological group need not be
open unless H is inexhaustible. The dual of a Banach space is σ-compact in the
weak star topology by the Theorem of Alaoglu–Banach–Bourbaki; by Theorem 1.6
therefore it is inexhaustible iff it is finite dimensional.

2. Projective Limits of Lie Groups

All of the above theorems rest on countability conditions. This is different for the
Open Mapping Theorem for pro-Lie groups which we need to describe. They form
a wide class of mostly infinite dimensional topological groups with an effective Lie
theory.

Recall that a filter on a topological group G is called a Cauchy filter if for every
identity neighborhood U there is a set F in the filter such that F−1F ⊆ U . The
group G is called complete if every Cauchy filter converges.

Proposition 2.1. For a topological group G the following statements are equiv-
alent:
(i) There is a projective system {fjk:Gk → Gj |j ≤ k, (j, k) ∈ J × J} of finite

dimensional Lie groups such that G = limj∈J Gj.
(ii) G is isomorphic as a topological group to a closed subgroup of a product∏

j∈J Gj of finite dimensional Lie groups.
(iii) G is complete and each identity neighborhood of G contains a normal subgroup

N such that G/N is a finite dimensional Lie group.
(See [8], or [7], Chapter 3. The proof of the implication “anything else =⇒(iii)” is
nontrivial.)

Definition 2.2. A topological group satisfying the equivalent conditions of Propo-
sition 2.1 is called a pro-Lie group. If every identity neighborhood of G contains
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a normal subgroup N such that G/N is a finite dimensional Lie group, then G is
called a proto-Lie group. ut

Accordingly, every pro-Lie group is a proto-Lie group, and a proto-Lie group is
a pro-Lie group if and only if it is complete. To see this note that, for every proto-
Lie group G, the set N (G) of closed normal subgroups of G such that G/N is a
finite dimensional Lie group is a filter basis such that there is a natural embedding
morphism γG:G → GN (G)

def= limN∈N (G) G/N with dense image, and GN (G) is a
pro-Lie group and the completion of G ([7], Theorems 4.1). We shall also write
the completion of G as G, notably when we consider G as a dense subgroup of its
completion. If G is a topological group and N a complete normal subgroup such
that G/N is complete as well then G is complete (see for instance [15], p. 225,
12.3); therefore if a proto-Lie group G fails to be a pro-Lie group then none of
the normal subgroups N ∈ N (G) is complete. Every closed subgroup of a pro-Lie
group is a pro-Lie group as follows easily from Proposition 2.1. A Lie group is a
proto-Lie group if and only if it is finite dimensional. If J is any set, the power
RJ is a pro-Lie group. If J is infinite, then this group fails to be locally compact,
and if J is uncountable, RJ fails to be metric. All locally compact abelian groups
are pro-Lie groups. A topological group G is called almost connected, if the factor
group G/G0 modulo its identity component is compact. All almost connected
locally compact groups are pro-Lie groups [16], [17], see also [14], p. 175.

Example 2.3. There is a pro-Lie group topology on the free abelian group Z(N)

of countably many generators making it into a nondiscrete pro-Lie group H ([12],
[9], and [7], Chapter 5). If G denotes Z(N) with the discrete topology, then the
identity morphism f :G→ H is a bijective morphism of pro-Lie groups that is not
open where G is σ-compact and H is countable. ut

After Example 2.3 it is hopeless to expect any Open Mapping Theorem for Pro-Lie
Groups to arise from Baire category arguments directly, because a countable ho-
mogeneous Baire space is necessarily discrete. One therefore expects the following
result to be nontrivial: This will be borne out by the proof.

Theorem 2.4. (The Open Mapping Theorem for Pro-Lie Groups) A surjec-
tive morphism f :G→ H of pro-Lie groups is open if G is almost connected.

Example 2.5. Let C be the compact character group of the discrete abelian group
ZN, that is if T = R/Z, then C = Hom(ZN, T). Let G = Hom(ZN, R) ∼= R2ℵ0 and
define Hom(ZN, p):G → C, p: R → T being the quotient morphism, to be the
induced map. Then the image of this morphism is the arc component H of zero
in C. So the corestriction f :G→ H is a surjective open morphism from a pro-Lie
group onto an incomplete proto-Lie group. (See [12], or [8], Chapter 4.) ut

Thus, unfortunately, a quotient group of a pro-Lie group need not be a pro-Lie
group. This makes a reduction of the problem of analyzing a surjective morphism
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f :G → H via canonical decomposition f = f ′ ◦ q with a quotient morphism
q:G→ G/ ker f and a bijective morphism f ′:G/ ker f → H very tricky.

The remainder of this article is devoted to a proof of this theorem. An earlier
version of a proof is about to appear in [11]. The first part of the present proof
will show that G/ ker f is a pro-Lie group and the second part will prove the Open
Mapping Theorem for bijective morphisms between connected pro-Lie groups.

3. Divibility of Groups and Connected Pro-Lie Groups

For what is to follow soon we need a new line of algebraic properties of pro-
Lie groups and groups in general. Recall that a divisible group is one in which
the equation xn = g has a solution for every group element g and every natural
number n. Clearly homomorphic images of divisible groups are divisible.

3.1. Proposition. (i) Let g be an element of a divisible group G. Then
there is a group homomorphism f : Q → G such that f(1) = g. Accordingly, g is
contained in the divisible abelian subgroup f(Q) of G.

(ii) Homomorphic images of Q are either singleton or infinite.
(iii) A finite group has no divisible subgroups other than the singleton one.

Proof. (i) Using divisibility, recursively define elements g1 = g, g2, . . . such that
gn

n = gn−1, n = 2, 3, . . .. Every rational number q ∈ Q can be written in the form
q = ±m/n!. The function f : Q → G sending q = ±m/n! to g±m

n is well defined
and satisfies the requirements.

(ii) Let S be a subgroup of Q. If S = {0} then Q/S ∼= Q. Assume that
S contains a member s 6= 0; then x 7→ s−1x : Q → Q is an automorphism and
Q/S ∼= Q/s−1S. Moreover, 1 = s−1s ∈ s−1S. We may and will assume that 1 ∈ S.
Then Q/S ∼= (Q/Z)/(S/Z) is a homomorphic image of Q/Z =

⊕
p prime Z(p∞)

where Z(p∞) = {m/pn : m ∈ Z, n ∈ N}/Z is the Prüfer group for the prime
p. Since this is the decomposition into p-primary components or Sylow groups,
S/Z =

⊕
p prime Sp for Sp = (S/Z) ∩ Z(p∞), and

Q/S ∼=
⊕

p prime

Z(p∞)/Sp.

Show that a quotient group of Z(p∞) is either singleton or isomorphic to Z(p∞).
Thus Q/S is either singleton or infinite as a direct sum of Prüfer subgroups.

(iii) is a consequence of (i) and (ii). ut

The structure of abelian divisible groups is completely known: See for instance
[6], Appendix, 1, Theorem A1.42.
In any compact connected group, every element is contained in a maximal pro-
torus (see for instance [6], Theorem 9.32). Compact connected abelian groups are
divisible (see e.g. [6], Corollary 8.5). Therefore if a compact group G is connected,
that is G = G0, then it is divisible. The finite quotients of G/G0 separate the
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points; thus if G 6= G0, by Proposition 3.1(iii), G fails to be divisible. Therefore
we have the
Fact. A compact group is connected iff it is divisible.
(For compact abelian groups see [6], Theorem 8.4.) The additive group of the
field Qp of p-adic numbers is a nondiscrete locally compact noncompact divisible
group. By [7], Lemma 5.12, and the Fact above, every connected abelian pro-Lie
group is divisible.

For an arbitrary (not necessarily topological) group G, let us denote by D(G)
the subgroup that is algebraically generated by all divisible subgroups. Then
clearly
for any group homomorphism f :G→ H the containment f

(
D(G)

)
⊆ D(H) holds.

In particular, recalling that a subgroup of a group is said to be fully character-
istic if every endomorphism maps it into itself we have the following observation:
for any group G the subgroup D(G) is fully characteristic.

This is understood in the sense of the category of groups; that is, no continuity
is involved. However, let us now consider a connected pro-Lie group G with Lie
algebra g. The subgroup A(G, g) ⊆ G algebraically generated by the set expG g of
all one-parameter subgroups (called the minimal analytic subgroup with Lie algebra
g = L(G) in [7], Chaptr 9) satisfies D

(
A(G, g)

)
= A(g, G).

We need several pieces of information from the theory of pro-Lie groups [7].

A. Lemma. Let G be a connected pro-Lie group. Then G = D(G). That is,
G is generated by its divisible subgroups.

Proof. By Theorem [7], 12.65 there is a compact connected abelian, hence
divisible, subgroup C of G such that G = C·A(G, g). Since A(G, g) is generated
by its one parameter subgroups, G is generated by divisible subgroups. ut

3.2. Proposition. Let G be a connected pro-Lie group. Then G has no
subgroups of finite index.

Proof. By Lemma A, we have G = D(G) and so for any homomorphism f :G→ H
the image f(G) is contained in D(H). If N is any normal subgroup of G, closed
or not, then G/N = D(G/N). If G/N is finite, then D(G/N) = {N} and so
N = G. If H is any subgroup of G of finite index, say, G = g1H∪̇ · · · ∪̇gnH, then
N =

⋂n
m=1 gmHg−1

m is a normal subgroup of finite index, and thus must equal G
by what we saw. So H = G. ut

The proof shows that G cannot contain any proper normal subgroup N such
that G/N does not contain any nontrivial divisible subgroups.

3.3. Proposition. Let C be a closed central totally disconnected subgroup of
a connected pro-Lie group L. If G is any subgroup of L such that L = CG and
C ∩G = {1}. Then G = L.
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Proof. Let N ∈ N (L). Then CN/N is a closed central subgroup of the finite
dimensional Lie group L/N . By the Closed Subgroup Theorem for Projective
Limits [7] 1.34(i), C is canonically isomorphic to limN∈N (L) CN/N where CN/N

is discrete since C is prodiscrete. Also, if L is connected, then CN/N is a closed
central subgroup of the connected finite dimensional Lie group L/N . Hence it
is finitely generated abelian, and so CN/N is finitely generated abelian, that is,
it is isomorphic to a direct product of finitely many cyclic groups. By Theorem
1.34(iv) of [7] we know that C/(C ∩ N) ∼= CN/N as topological groups, and so
there is a closed subgroup BN = C ∩N of C such that C/BN is finitely generated
discrete, and limN∈N (L) BN = limN∈N (L) N = 1.

Now any direct product of nondegenerate cyclic groups is profinite, that is, the
subgroups of finite index separate the points.

Finally we suppose that C 6= {1} and derive a contradiction. From the preced-
ing paragraph we get a subgroup B of C such that C/B is finite.

Since L is algebraically the direct product C·G and B is contained in C, the
factor group L/B is algebraically the direct product (C/B)·(GB/B) Thus the
connected pro-Lie group L has a normal subgroup GB of index |C/B|. This is
impossible by Proposition 3.2 above. ut

We introduce a technical, but convenient terminology:

Definition 3.4. A proto-Lie group P has a stable Lie algebra if L(P ) = L(P ) for
its completion P .

This applies to pro-Lie groups as follows:

B. Lemma. Let f :G → H be a quotient morphism of topological groups. If
G is a pro-Lie group then H is a proto-Lie group and the canonical embedding

γH :H → H = HN (H) = lim
N∈N (H)

H/N

induces an isomorphism
L(γH):L(H)→ L(H)

of pro-Lie algebras. In particular L(H) is a pro-Lie algebra.

Proof. [7], 4.20(i0). ut

It should be clear that this will be a crucial point in the proof of the Open
Mapping Theorem 2.4. The following is now an important technical step in that
proof of the which we shall attack presently.

3.5. Corollary. Assume that G is a proto-Lie group with a stable Lie algebra
and assume that its completion G is connected. If there is a bijective morphism
f :G → H onto a complete topological group H, then G is complete, that is, G is
a pro-Lie group.
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Proof. Consider G as a subgroup of its completion G. The continuous morphism
f :G→ H into the complete group has a unique extension to a morphism F :G→
H of complete topological groups by the universal property of the completion. Let
C = kerF . Since L preserves kernels by [7] Theorem 2.20 or 4.20(ii), L(C) =
ker L(F ) = {X ∈ L(G) : (∀t ∈ R)F (X(t)) = 1} = {X ∈ L(G) : (∀t ∈ R)f(X(t)) =
1} = {0} since L(G) = L(G), F |G = f , and f is injective. Thus C, being a
pro-Lie group as a closed subgroup of G by the Closed Subgroup Theorem for
Pro-Lie Groups [7] 3.35, is totally disconnected by [7] Proposition 3.30. Since G is
connected, C is central. Now f is bijective, and thus if j:G → G is the inclusion
morphism, then ϕ = j ◦ f−1 ◦ F :G → G defines an algebraic endomorphism of
G satisfying ϕ2 = ϕ such that C = kerϕ and G = im ϕ. Then G = CG and
C ∩G = {1}. Thus Proposition 3.3 shows G = G. ut

Clearly, the completion G of a topological group G is connected if G is con-
nected, but Q in the induced topology of R a totally disconnected topological
group, whose completion R is connected.

It was for this result and its consequences that we had to find an algebraic
property of connected pro-Lie groups, such as being generated by divisible sub-
groups and thus having no finite algebraic homomorphic images. But now we
improve it by considering almost connected proto-Lie and pro-Lie groups in place
of connected ones;

3.6. Corollary. Assume that G is an almost connected proto-Lie group with
a stable Lie algebra. If there is a bijective morphism f :G → H onto a pro-Lie
group H, then G is a pro-Lie group and f(G0) = H0.

Moreover, f is an isomorphism of pro-Lie groups if f |G0 : G0 → H0 is open.

Proof. Let P = f−1(H0). Then G0 ⊆ P . Thus P is an almost connected proto-
Lie group and f |P : P → H0 is surjective since f is surjective. We claim that P
is connected and therefore equals G0. As P is almost connected, the factor group
P/G0 is profinite. So if P 6= G0, then P has an open normal proper subgroup Q of
finite index. Since f is surjective, f(Q) is a normal subgroup of finite index of H0.
Now H0 is a closed subgroup of H which is assumed to be a pro-Lie group. Thus
H0 is a connected pro-Lie group. By Proposition 3.2, this implies f(Q) = H0.
Since f is also injective, Q = P follows, in contradiction to the assumption that
Q is a proper subgroup of P . Thus G0 = f−1(H0) as asserted.

We note that G0 ⊆ G and L(G0) = L(G) = L(G), whence L(G0) = L(G0).
Now f |G0 : G0 → H0 is a bijective morphism, H0 is complete, and G0 is a
connected proto-Lie group with stable Lie algebra. Hence Corollary 3.5 applies to
f |G0 and shows that G0 is a pro-Lie group. We noted earlier that a topological
group T with a a complete normal subgroup N such that T/N is complete is itself
complete (see [15], p. 225, 12.3). Therefore, since G/G0 is compact and thus
complete, G is a pro-Lie group. Hence f :G→ H is a bijective morphism between
almost connected groups such that f |G0 : G0 → H0 is a bijective morphism
between connected pro-Lie groups.
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Now we assume that f |G0 : G0 → H0 is open and show that f is open. For a
proof let U be an open identity neighborhood of G; we must show that f(U) is open
in H. First we find a normal subgroup N ∈ N (G) contained in U , and, by making
U smaller if needed, we do not restrict generality by assuming that UN = U .
(See e.g. [7] 1.27(i).) Observe that G0N/N is an analytic subgroup of the finite
dimensional Lie group G/N whose Lie algebra agrees with L((G/N)0) and which
therefore is (G/N)0, whence G0/(G0 ∩ N) ∼= G0N/N is a finite dimensional Lie
group. Thus M

def= N ∩ G0 ∈ N (G0). Hence G0/M is a finite dimensional Lie
group and G/G0 is compact since G is almost connected. So the factor group
G/M is a locally compact almost connected and therefore σ-compact group. Since
f |G0 : G0 → H0 is an isomorphism, H0/f(M) is isomorphic to G0/M and is
therefore a finite dimensional Lie group, whence H/f(M) is locally compact. Thus
the induced map fM :G/M → H/f(M) is open by the Open Mapping Theorem for
Locally Compact Groups 1.7. Thus fM (U/M) = f(U)/f(M) is open in H/f(M)
and so f(U) is open in H as asserted. So f is open and therefore an isomorphism.ut

From our discussion of finite-dimensional pro-Lie groups we can now turn the
Open Mapping Theorem for Pro-Lie Groups 2.4.

3.7. Lemma. Assume that f :G → H is a surjective morphism of pro-Lie
groups and that G is almost connected. Then the following conclusions hold:
(i) The quotient group G/ ker f is a pro-Lie group, and the induced bijective mor-

phism f ′:G/ ker f → H maps (G/ ker f)0 bijectively onto H0.
(ii) f is open if the induced bijective morphism f ′ induces an open morphism

(G/ ker f)0 → H0 between connected pro-Lie groups.

Proof. By Lemma B, the quotient P = G/ ker f is a proto-Lie group by and has
a stable Lie algebra. Now Corollary 3.6 applies to f ′:G/ ker f → H and proves
claims (i) and (ii). ut

This Lemma reduces the Open Mapping Theorem for surjective morphisms be-
tween almost connected pro-Lie groups to the Open Mapping Theorem for bijective
morphisms between connected pro-Lie groups.

The following observation rounds off our general orientation on almost con-
nected groups.

3.8. Proposition. Let f :G → H be a morphism of topological groups and
assume, firstly, that G is almost connected and, secondly, that f(G) is dense in
H. Then H is almost connected.

Proof. Since f(G0) is connected and contains the identity, f(G0) ⊆ H0 and
therefore the morphism ϕ:G/G0 → H/H0, ϕ(gG0) = f(g)H0 is well-defined. By
assumption G/G0 is compact. Thus the continuous image ϕ(G/G0) is compact
and therefore, since H/H0 is Hausdorff, is closed in H/H0. Since f(G) is dense in
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H, it follows that ϕ(G/G0) is dense in H/H0. Therefore, H/H0 = ϕ(G/G0), and
so H/H0 is compact. ut

4. The Open Mapping Theorem for Bijective Morphisms

In this section we shall prove 2.4: The Open Mapping Theorem for Almost Con-
nected Pro-Lie Groups saying that a surjective morphism between pro-Lie groups
is open if its domain group is almost connected.

For a proof let f :G→ H be a surjective morphism between pro-Lie groups and
assume that G is almost connected. We must show that f is open. By Lemma 3.7
it is no loss of generality to assume that both G and H are connected and that f is
bijective. We will do this from now on and prove the theorem through a sequence
of steps.
〈1〉 Claim: G and H have the same Lie algebra g.

The morphism L(f):L(G) → L(H) is injective as L preserves kernels by [7],
Theorem 2.20; it is surjective by Corollary 4.22(ii) and so is an isomorphism by [7]
Theorem A2.12(b) in Appendix 2. We may therefore set g = L(G) = L(H) and
keep the commutative diagram

(∗)
g

id−−−−→ g

expG

y yexpH

G −−−−→
f

H

in mind.

〈2〉 Claims: (i) (∀N ∈ N (H))f−1(N) ∈ N (G), (ii) f induces an isomorphism
G/f−1(N)→ H/N , and (iii) L(f−1(N)) = L−1(f−1(N)0) = n

def= L(N).
The structural invariants of G and H are the filters N (G) and N (H), respec-

tively. Consider an N ∈ N (H) and n
def= L(N) ∈ I(g), the filter basis of all

cofinite-dimensional closed ideals of g. Let V be an open identity neighborhood of
H containing N such that V N = V and V/N contains no subgroups other than
the singleton one. Since f is continuous, U

def= f−1(V ) is an identity neighborhood
of G. Set M

def= f−1(N). Then UM = U and UM/M contains no subgroup other
than the singleton one. Since limN (G) = 1 in G there is a P ∈ N (G) such that
P ⊆ U . Then PM/M is a subgroup of G/M contained in U/M and thus agrees
with M/M , that is, PM = M , and so P ⊆ M . Therefore we have a surjective
morphism

fNP :G/P → H/N, fNP (gP ) = f(g)N

of topological groups. By the definition of N (G) we know that G/P is a finite
dimensional Lie group; it is connected since G is connected. Thus G/P is a locally
compact σ-compact group. Also, H/N is a finite dimensional Lie group since
N ∈ N (H). Hence it is locally compact. Thus the Open Mapping Theorem for
Locally Compact Groups 1.7 applies and shows that fNP is open. Since M/P =
ker fNP , we know that G/M ∼= (G/P )/(M/P ) ∼= H/N is a Lie group. Therefore
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M ∈ N (G). Thus
f−1(N (H)) ⊆ N (G)

and fN :G/f−1N → H/N , fN (gf−1(N)) def= f(g)N is an isomorphism. From
Corollary 4.21(i) we know that g/L(f−1(N)) ∼= L(G/f−1(N)) = L(H/N) ∼= g/n
It now follows from (∗) that L(f−1(N)) = n. We shall abbreviate (f−1(N))0 by
f−1(N)0 and recall L(f−1(N)0) = n.

〈3〉 Claim: {f−1(N)0 : N ∈ N (H)} is cofinal in {M0 : M ∈ N (G)}.
From (∗) and [7] Corollary 4.21(ii) we know that in the filter basis I(g) of

cofinite dimensional closed ideals of g both of the filterbases IG = {L(M) : M ∈
N (G)} and IH = {L(N) : N ∈ N (H)} are cofinal in id g; we shall use the
cofinality of the latter. If M ∈ N (G), then m

def= L(M) ∈ IG and M0 = 〈expG m〉
by Corollary 4.22(i) of [7]. Since IH is cofinal in I(g) there is an NM ∈ N (H) such
that L(f−1(NM )) ⊆ m. Consequently, using [7], 4.22(i) again we get f−1(NM )0 =
〈expG n〉 ⊆ 〈expG m〉 = M0, more specifically,

(∀M ∈ N (G))(∃NM ∈ N (H))f−1(NM )0 ⊆M0.

〈4〉 Claim: G ∼= limN∈N (H) G/f−1(N)0, that is, we have a limit representation of
G indexed by N (H).

By 〈3〉, the filterbasis {f−1(N)0 : N ∈ N (H)} is cofinal in the filterbasis
{M0 : M ∈ N (G)}. From [7], Corollary 9.45 we know that G ∼= limM∈N (G) G/M0.
Thus by the Cofinality Lemma 1.21 of [7],

γ:G→ lim
N∈N (H)

G/f−1(N)0, γ(g) = (gf−1(N)0)N∈N (H)

is an isomorphism.

〈5〉 Claim: (∀N ∈ N (H))f−1(N0) = f−1(N)0.
This is a subtle but important point. Abbreviate f−1(N) by M . The bijective

morphism f induces a bijective morphism f |M :M → N between pro-Lie groups;
it clearly maps M0 into N0, and we claim that it maps M0 onto N0. Let P

def=
f−1(N0) ⊆M , then M0 = f−1(N)0 ⊆ P and we have to show equality. From [7],
Corollary 9.45(iii) it follows that P/M0 ⊆M/M0 is isomorphic to a direct product
C × Zn for a compact totally disconnected abelian group C and a discrete free
group of rank n. These groups are residually finite, that is, the finite homomorphic
images separate the points. Now suppose that P 6= M0, then P contains a normal
subgroup Q of finite positive index (containing M0). But then f(Q) is a normal
subgroup of f(P ) = N0 of finite positive index since f is bijective. But this
contradicts Proposition 3.2. Thus P = M0 and the claim is proved.

〈6〉 Claim: The bijection f induces a natural isomorphism of topological groups
α: limN∈N (H) G/f−1(N)0 → limN∈N (H) H/N0.

Let N ∈ N (H). Then f−1(N)0 = f−1(N0) by 〈5〉, and thus f induces a
bijective morphism f−1(N)0 → N0 and then also a bijective morphism

αN :G/f−1(N)0 → H/N0, αN (gf−1(N)0) = f(g)N0.
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Since f−1(N) ∈ N (G) by 〈2〉 above, the factor group G/f−1(N)0 is locally com-
pact by Corollary 9.45 of [7], as is the factor group H/N0. Since the group G
is connected, G/f−1(N)0 is σ-compact. The Open Mapping Theorem for Lo-
cally Compact Groups applies and shows that αN is an isomorphism for each
N ∈ N (H). This gives us an isomorphism

α: lim
N∈N (H)

G/f−1(N)0 → lim
N∈N (H)

H/N0,

α
(
(gNf−1(N)0)N∈N (H)

)
= (f(gN )N0)N∈N (H)

which is represented in the following diagram:

G/f−1(N)0
µN←−−−− lim

Q∈N (H)
G/f−1(Q)0

αN

y yα

H/N0 ←−−−−
νN

lim
Q∈N (H)

H/Q0

for the respective limit morphisms µ, ν.

〈7〉 Claim: f is an isomorphism of topological groups.
The function γ:G→ limN∈N (H) G/f−1(N)0, γ(g) = (gf−1(N)0)N∈N (H) is an

isomorphism by 〈4〉, and γN0(H):H → limN∈N (H) H/N0, N0(H) = {N0 : N ∈
N (H)} is an isomorphism by Corollary 9.45(ii). By 〈6〉, the map α is an isomor-
phism. We have a commutative diagram

G
f−−−−→ H

γ

y yγN0(H)

lim
N∈N (H)

G
f−1(N)0

−−−−→
α

lim
N∈N (H)

H
N0

.

It follows that f is an isomorphism.
And this last step completes the proof of Theorem 2.4. ut

5. Immediate Conclusions

We record some immediate consequences; applications abound in [7].

5.1. Corollary. (Closed Graph Theorem for Pro-Lie Groups) Assume that
G and H are pro-Lie groups and that f :G → H is a morphism of groups (alge-
braically) with graph graph(f) def= {

(
x, f(x)

)
: x ∈ G} ⊆ G × H. Consider the

following statements:
(i) f is continuous.
(ii) The graph graph(f) is closed in G×H
(iii) graph(f) is closed in G×H and is almost connected.

Then (iii)=⇒(i)=⇒(ii).
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Proof. (i)=⇒(ii) is a consequence of the general fact that the graph of any
continuous function into a Hausdorff space is closed. We must show that (iii)
implies (i). We define γ:G → graph(f) by γ(x) =

(
x, f(x)

)
and decompose f as

follows:
G

γ−−−−→ graph(f)
prH | graph(f)−−−−−−−−→H.

We see that f is continuous if γ is continuous. The continuity of γ is equivalent
to the openness of γ−1 = prG | graph(f). By (ii) graph(f) is a closed subgroup of
the pro-Lie group G × H. By the Closed Subgroup Theorem of Pro-Lie Groups
[7] 3.35, it is a pro-Lie group. Now the Open Mapping Theorem 2.4 applies to the
continuous morphism prG | graph(f) : graph(f)→ G and shows that it is open. ut

5.2. Corollary. (Second Isomorphism Theorem for Pro-Lie Groups) Assume
that a pro-Lie group G is a product of an almost connected closed normal subgroup
N and an almost connected closed subgroup H. Then β:H/(H ∩N)→ G/N is an
isomorphism.

Proof. By the Closed Subgroup Theorem [7], 3.35, the closed subgroup H of the
pro-Lie group G is a pro-Lie group. By Theorem [7], 4.28(i), G/N is a pro-Lie
group since both G and N are almost connected. Hence the function f :H → G,
f(h) = hN is a surjective morphism of pro-Lie groups whose domain is almost
connected by hypothesis. therefore, by the Open Mapping Theorem 2.4, the mor-
phism f is open. We have ker f = H ∩N , and if q:H → H/ ker f is the quotient
morphism we have f = β ◦ q and β is open and therefore is an isomorphism. ut
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