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The essential attributes of a Lie group G are the associated Lie algebra LðGÞ and
the exponential function exp : LðGÞ ! G. The prescription L operates not only on
Lie groups but also on morphisms between them: it is a functor.

Many features of Lie theory are shared by classes of topological groups which
are much larger than that of Lie groups; these classes include the classes of com-
pact groups, locally compact groups, and pro-Lie groups, that is, complete topolog-
ical groups having arbitrarily small normal subgroups N such that G=N is a (finite-
dimensional) Lie group.

Considering the functor L it is therefore appropriate to contemplate more general
classes of topological groups. Certain functorial properties of the assignment of a
Lie algebra to a topological group (where possible) will be essential. What is new here
is that we will introduce a functorial assignment from Lie algebras to groups and
investigate to what extent it is inverse to the Lie algebra functor L. While the Lie
algebra functor is well known and is cited regularly, the existence of a Lie group
functor available to be cited and applied appears less well known. Sophus Lie’s Third
Fundamental Theorem says that for each finite-dimensional real Lie algebra there is
a Lie group whose Lie algebra is (isomorphic to) the given one; but even in classical
circumstances it is not commonly known that this happens in a functorial fashion and
what the precise relationship between the Lie algebra functor and the Lie group func-
tor is.

1 The exponential function of topological groups

We shall utilize some basic category theory such as concerns the nature and existence
of adjoint functors, and it helps if the reader knows the rudiments of Lie group theory
such as Lie algebras and the exponential function.

Definitions 1.1. Let G be a topological group. A one parameter subgroup is a mor-
phism X : R ! G of topological groups. The set HomðR;GÞ of all one parameter
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subgroups is given the topology of uniform convergence on compact sets, that is, basic
neighborhoods of a one parameter subgroup X : R ! G are of the form WðX ; n;UÞ,
where n A N and U ranges through the open identity neighborhoods of G and where

WðX ; n;UÞ ¼def fY A HomðR;GÞ j ðEr A R; jrjc nÞYðrÞXðrÞ�1 A Ug:

The set HomðR;GÞ endowed with this topology is denoted by LðGÞ. The continuous
evaluation function X 7! Xð1Þ : LðGÞ ! G will be denoted by expG and will be called
the exponential function of the topological group G. We note that expG X ¼ Xð1Þ.

A few immediate observations are in order. Firstly, let us say that an action
ðr; xÞ 7! r � x : R� X ! X of R on a Hausdor¤ topological space X with base-point
x0 is a scalar multiplication if the following conditions are satisfied:

(i) the action is continuous;

(ii) ðEx A X Þ 0 � x ¼ x0 and ðEx A XÞ 1 � x ¼ x;

(iii) ðEr; s A R; x A XÞ ðrsÞ � x ¼ r � ðs � xÞ;

(iv) for each x A X , the orbit R � x is an abelian group with respect to an operation þ
which satisfies ðEr; s A RÞ ðr � xÞ þ ðs � xÞ ¼ ðrþ sÞ � x.

Let X be a Hausdor¤ topological space X with scalar multiplication and with base-
point x0. It is easily seen that if x0 0 x A X then the function r 7! r � x : R ! R � x is
a bijective morphism of abelian groups, that the base-point x0 is the neutral element
of all abelian groups R � x, x A X and that the multiplicative group R� ¼ ðRnf0g; �Þ
acts on X and has the orbits fx0g and R� � x with x0 x0. Thus a topological space
with a scalar multiplication looks a lot like a topological vector space without addi-
tion.

If Rn is a euclidean space and S any closed non-empty subset of the unit sphere,
then R � S is a locally compact space with a scalar multiplication (namely, the one
induced by the ordinary scalar multiplication of Rn).

The following remark will show that the topological space LðGÞ has a scalar mul-
tiplication for every topological group G.

Remark 1.2. (i) The constant morphism O : R ! G, OðrÞ ¼ 1, is a member of LðGÞ
which we consider distinguished; so LðGÞ is a pointed space, i.e. a space with a base-
point.

(ii) Define a continuous action R�LðGÞ ! LðGÞ by ðr � X ÞðtÞ ¼ XðtrÞ for r; t AR,
X A LðGÞ. Then 0 � X ¼ O and ðrsÞ � X ¼ r � ðs � XÞ.

(iii) For each X A LðGÞ, the image A ¼def
X ðRÞ is an abelian subgroup of G, and

thus LðAÞ ¼ HomðR;AÞ is an abelian group under pointwise multiplication. Each
r � X may be considered as an element of LðAÞ such that ðrþ sÞ � X ¼ ðr � XÞðs � XÞ.
The last identity can be rephrased as

expðrþ sÞ � X ¼ ðexp r � XÞðexp s � XÞ:
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Proof. Almost all of these assertions are proved straightforwardly, but the continu-
ity of the action deserves comment. Let Wðr0 � X0; n;UÞ be a basic neighborhood of
r0 � X0 according to Definition 1.1. Then we have Y A Wðr0 � X0; n;VÞ if and only
if YðtÞ A VX0ðtr0Þ for all t A ½�n; n�. Let U be an open identity neighborhood of G

such that UU JV . Let d A �0; 1� be such that jr� r0j < d implies X0ðtrÞ A UX0ðtr0Þ
for t A ½�n; n�. Find m A N so that jr� r0jc 1 and jtjc n imply jtrjcm. Then
ðr;XÞ A �r0 � d; r0 þ d½ �WðX0;m;UÞ and jtjc n imply jtrjcm and thus

ðr � XÞðtÞ ¼ X ðtrÞ A UX0ðtrÞJUUX0ðtr0ÞJVðr0 � X0ÞðtÞ;

that is, r � X A Wðr0 � X0; n;VÞ.

The action ðr;XÞ 7! r � X : R� LðGÞ ! LðGÞ will be called the scalar multiplica-

tion of LðGÞ.

2 The Lie algebra of a topological group

We define the commutator commðg; hÞ of two elements g; h of a group to be ghg�1h�1.
For a topological group G and one parameter subgroups X ;Y A LðGÞ we de-

fine continuous functions XY ; commðX ;Y Þ : R ! G by ðXY ÞðrÞ ¼ XðrÞYðrÞ and
commðX ;Y ÞðrÞ ¼ commðX ðrÞ;YðrÞÞ. Of course these functions are not one param-
eter subgroups in general except when commðXðrÞ;Y ðrÞÞ ¼ 1 for all r, which is cer-
tainly the case if G is commutative.

For a subset A of a group G we shall write hAi for the subgroup algebraically gen-
erated by A in G.

Definitions 2.1. Let G be a topological group. Then it is said that G has a Lie algebra

or, equivalently, that G is a topological group with a Lie algebra if the following con-
ditions hold:

(i) For all X ;Y A LðGÞ, the following limits exist pointwise for all t A R:

ðX þ Y ÞðtÞ ¼def
lim
n!y

ðX ðt=nÞY ðt=nÞÞn; ð�Þ

½X ;Y �ðt2Þ ¼def
lim
n!y

commðXðt=nÞ;Yðt=nÞÞn
2

ð��Þ

and X þ Y ; ½X ;Y � A LðGÞ.

(ii) Addition ðX ;Y Þ 7! X þ Y : LðGÞ � LðGÞ ! LðGÞ and bracket multiplication
ðX ;Y Þ 7! ½X ;Y � : LðGÞ � LðGÞ ! LðGÞ are continuous.

(iii) With respect to scalar multiplication �, addition þ, and bracket multiplication
½� ; ��, the set LðGÞ is a real Lie algebra. The Lie algebra LðGÞ of a topological

group is said to be generating, if the closed subgroup hexpLðGÞi generated by
the image is the identity component G0 of G.
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In particular, if G has a Lie algebra, then LðGÞ is a topological Lie algebra. Note
that a topological group G has a Lie algebra if and only if G0 has a Lie algebra.

A real Lie group is a group object in the category of finite-dimensional smooth
manifolds and smooth functions; this is but one of many possible equivalent defini-
tions. However, any of the standard definitions of a (real) Lie group provides a finite-
dimensional real Lie algebra LðGÞ and an exponential function expG : LðGÞ ! G so
that for every x A LðGÞ the function r 7! expG r � x : R ! G is a one parameter sub-
group X of G such that X ð1Þ ¼ expG x, and x 7! X : LðGÞ ! HomðR;GÞ is a ho-
meomorphism. Thus we have

Theorem 2.2. Every Lie group has a Lie algebra.

Theorem 2.3. Every abelian topological group has a Lie algebra, and its Lie algebra is

commutative.

Proof. If X ;Y A LðGÞ and commðXðrÞ;Y ðrÞÞ ¼ 0 for all r A R, then

X
t

n

� �
Y

t

n

� �� �n

¼ XðtÞYðtÞ

and thus 2.11(i) is clearly satisfied with X þ Y the pointwise product. Obviously the
bracket product vanishes.

The proof of the following remark is a straightforward exercise:

Proposition 2.4. If G is the additive group of a topological vector space E, then G is a

topological group with Lie algebra, and LðGÞ ¼ E with zero bracket. Every topological

vector space occurs in this fashion as the Lie algebra of a topological group.

Proof. The function j : E ! LðGÞ defined by jðxÞðtÞ ¼ t � x is a linear map which is
the inverse of the exponential function exp : LðGÞ ! G. Therefore LðGÞ and E are
isomorphic as topological vector spaces. In particular, every topological vector space
occurs (up to isomorphism of topological vector spaces) as the Lie algebra of a topo-
logical group.

In [2, p. 337, Exercise E7.17] we have seen a closed arcwise connected subgroup G

of the additive group of a separable Banach space E such that LðGÞ ¼ f0g; in par-
ticular, G is an arcwise connected complete group without small subgroups which
fails to be a Lie group. We also saw in [2, p. 135, Proposition 5.33(iv)] that a compact
group without small subgroups is a Lie group; this remains true for locally compact
groups, but the proof is much harder.

3 The category of topological groups with Lie algebras

We shall review and record the names of several categories of interest to us. In any
category A, the set of morphisms A1 ! A2 is denoted by AðA1;A2Þ.
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Definitions 3.1. (i) The category of topological groups (all of which are assumed to
be Hausdor¤ ) and continuous group homomorphisms as morphisms is denoted by
TOPGR.

(ii) If C is a category, a subcategory A is called full if AðA1;A2Þ ¼ CðA1;A2Þ for
each pair of objects A1;A2 in obðAÞ. If C is any class of objects of a category C, then
A ¼ 6ðA1;A2Þ AC�C

CðA1;A2Þ is a full subcategory of C called the full subcategory of

C-objects.
(iii) The full subcategory of TOPGR of all topological groups having a Lie alge-

bra (in the sense of Definitions 2.1) is denoted by LIEALGGR.
(iv) If X and Y are two topological spaces with scalar multiplication, then a

function f : X ! Y is called a scalar morphism if it is continuous and satisfies
f ðt � xÞ ¼ t � f ðxÞ for all t A R and x A X . The category of Hausdor¤ topological
spaces with scalar multiplication and scalar morphisms between them is denoted by
SCAL (see discussion following 1.1).

It is worth taking note of the fact that a morphism f : G ! H between two groups
having a Lie algebra is simply a continuous group homomorphism.

Theorem 3.2. Let f : G ! H be a TOPGR-morphism. Then there is a unique scalar

morphism Lð f Þ : LðGÞ ! LðHÞ such that

LðGÞ ���!Lð f Þ
LðHÞ

expG

???y
???yexpH

G ���!
f

H

ð1Þ

commutes. It is defined by Lð f ÞðX Þ ¼ f � X for X A LðGÞ.

Proof. Since f is continuous, if U is an identity neighborhood of G we find an iden-
tity neighborhood V of G such that f ðVÞJU ; if now C is a compact subset of R,

then for X ;Y A LðGÞ, the relation YðrÞ�1
XðrÞ A V for all r A C implies that

Lð f ÞðY ÞðrÞ�1
Lð f ÞðXÞðrÞ ¼ ð f � Y ÞðrÞ�1ð f � X ÞðrÞ ¼ f ðY ðrÞ�1

XðrÞÞ A f ðVÞJU

for all r A C. It follows that Lð f Þ is continuous. Let r A R. Then

Lð f Þðr � X ÞðtÞ ¼ f ððr � X ÞðtÞÞ ¼ f ðXðtrÞÞ ¼ ð f � X ÞðtrÞ

¼ ðr � ð f � X ÞÞðtÞ ¼ ðr � Lð f ÞðXÞÞðtÞ:

Thus Lð f Þ is a scalar morphism. If x A LðGÞ, then

expH Lð f ÞðX Þ ¼ Lð f ÞðXÞð1Þ ¼ f ðX ð1ÞÞ ¼ f ðexpG X Þ:
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Thus (1) is commutative. It remains to show uniqueness. Assume that

F : LðGÞ ! LðHÞ

is a scalar morphism such that expH �F ¼ f � expG. Let X A LðGÞ. Then

expHðFðr � X ÞÞ ¼ expHðr �FðX ÞÞ ¼ FðX ÞðrÞ

on the one hand and f ðexpG r � XÞ ¼ f ðX ðrÞÞ, that is, FðX Þ ¼ f � X ¼ Lð f ÞðXÞ.

Let TOP� denote the category of pointed topological spaces and continuous maps
preserving base-points, and let I : SCAL ! TOP� and J : TOPGR ! TOP� be the
forgetful functors which assign to a space with scalar multiplication the underlying
pointed space, respectively, to a topological group the underlying pointed space. A
functor is said to be continuous if it preserves all limits. (See for instance [2, Appendix
3].)

Theorem 3.3. The assignments G 7! LðGÞ and f 7! Lð f Þ define a continuous functor

L : TOPGR ! SCAL and exp : I � L ! J is a natural transformation of functors:
TOPGR ! TOP�.

Proof. We have to verify several statements.
(a) L is a functor. If f : G ! G is the identity map, then Lð f ÞðXÞ ¼ f � X ¼ X

shows that Lð f Þ is the identity morphism. If f1 : G1 ! G2 and f2 : G2 ! G3 are
morphisms of topological groups, then

Lð f2 � f1ÞðX Þ ¼ ð f2 � f1Þ � X ¼ f2 � ð f1 � X Þ ¼ ðLð f2Þ � Lð f1ÞÞðXÞ:

Thus Lð f2 � f1Þ ¼ Lð f2Þ � Lð f1Þ.
(b) exp is a natural transformation I � L ! J. This is immediate from the defini-

tion of a natural transformation of functors in 1.1 and the commutativity of the dia-
gram (1) above.

(c) The functor L is continuous, i.e., preserves limits. It su‰ces to show that L

preserves products and equalizers. (See for instance [2, p. 722, Theorem A3.47].)
Products: Let fGj j j A Jg be a family of topological groups. Let

prj : P ¼def
Y
k A J

Gk ! Gj

denote the projections. Define j : LðPÞ !
Q

j A J LðGjÞ by jðX Þ ¼ ðprj � XÞj A J ; con-
versely, if ðXjÞj A J A P, then the universal property of the product gives a unique

X : R ! P such that Xj ¼ prj � X . If we write X ¼ cððXjÞj A JÞ, then

c :
Y
j A J

LðGjÞ ! P
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is an inverse of j. Since both j and c preserve scalar multiplication (which is com-
ponentwise on products) we have

L
�Y

j A J

Gj

�
G

Y
j A J

LðGjÞ:

Equalizers: Let f1; f2 : G ! H be two morphisms of topological groups, set
E ¼ fg A G j f1ðgÞ ¼ f2ðgÞg and let e : E ! G be the inclusion. Then E is a closed
subgroup of G and e is the equalizer of f1 and f2. We claim that LðeÞ : LðEÞ ! LðGÞ
is the equalizer of Lð f1Þ;Lð f2Þ : LðGÞ ! LðHÞ. For this purpose, let X A LðEÞ.
Then

Lð f1ÞðX ÞðtÞ ¼ f1ðXðtÞÞ ¼ f2ðXðtÞÞ ¼ Lð f2ÞðX ÞðtÞ:

Thus X equalizes Lð f1Þ and Lð f2Þ. Conversely assume that X A LðGÞ equalizes Lð f1Þ
and Lð f2Þ. Then

f1ðXðtÞÞ ¼ Lð f1ÞðXÞðtÞ ¼ Lð f2ÞðX ÞðtÞ

for all t A R so that XðtÞ A E for all t, and thus X A LðEÞ.
This concludes the proof that L preserves products and equalizers and thus arbi-

trary limits.

To category theorists, the continuity of L is not a surprise because

L ¼ HomðR;�Þ : TOPGR ! SCAL

is a hom-functor.

Definitions 3.4. Let G be a topological group and let Ga denote the arc compo-
nent of 1 in G, called the identity arc component of G. Finally, let EðGÞ denote the
smallest closed subgroup of G containing the images of all one parameter subgroups;
that is

EðGÞ ¼ hexpGðLðGÞÞi: ð2Þ

Observe that each of G0;Ga and EðGÞ is mapped into itself by any continuous map
G ! G which fixes 1 and thus by any endomorphism of G; that is, each of these three
groups is a fully characteristic subgroup of G (cf. [2, p. 23]). Notice that Ga may not
be closed as the example of the p-adic solenoid shows; see also [2, (1.28), (1.38)], and
[2, Chapter 8] in general.

We say that the Lie algebra LðGÞ is generating if G has a Lie algebra and
G0 ¼ EðGÞ.

Since expG LðGÞ is arcwise connected, so is hexpG LðGÞi and hence the closure of
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this group is connected. If G is a Lie group, then expG LðGÞ is an identity neighbor-
hood, and this makes hexpG LðGÞi an open (hence closed) subgroup, implying that
G0 JEðGÞ, and thus the Lie algebra of any Lie group is generating. The universe
in which we shall work is that of topological groups which have a generating Lie
algebra.

In [2, p. 337, Exercise E7.17] we encountered a closed contractible (and hence
arcwise connected) non-singleton subgroup G of the additive Lie group of a Banach
space which has no one parameter subgroups, and hence satisfies EðGÞ ¼ f0g. If X
is an arcwise connected compact pointed space and F ðX Þ is the free compact abe-
lian group on X (see [2, p. 407¤.]) the subgroup hXi of FðX Þ is free as an abelian
group (see [2, p. 410, Proposition 8.52]) and thus as a topological group satisfies
EðhXiÞ ¼ f0g while being arcwise connected. Similar comments apply to the free
(non-abelian) compact group. Thus there is an abundance of connected topological
groups (even abelian ones) which have a Lie algebra due to the fact that they have no
non-trivial one parameter subgroups. This confirms that no structural information
via the exponential function is to be obtained unless the Lie algebra is generating.

If G has a Lie algebra, then the fully characteristic closed subgroup EðGÞ has a
generating Lie algebra by definition.

If H is a subgroup of a topological group G, then the coextension of any one pa-
rameter subgroup X : R ! H to G gives a one parameter subgroup R ! G which
we shall also write as X by a slight abuse of notation; that is, if incl : H ! G is the
inclusion, we identify X and incl � X . Thus we write LðHÞJLðGÞ.

The proof of the following proposition is straightforward from the definitions:

Proposition 3.5. For any topological group G, one has

LðhexpG LðGÞiÞ ¼ LðGaÞ ¼ LðG0Þ ¼ LðGÞ ¼ LðEðGÞÞ; ð3Þ

and the following statements are equivalent:

(i) G has a Lie algebra;

(ii) G0 has a Lie algebra;

(iii) EðGÞ has a Lie algebra;

(iv) Ga has a Lie algebra.

For locally compact groups G we have Ga ¼ hexpLðGÞi and G0 ¼ EðGÞ, but that
is not obvious. If we consider G ¼ Q, the additive group of rational numbers in the
topology induced from that of RKQ, then H ¼ R is the completion of G. By The-
orem 2.3, both G and H have Lie algebras, and by Theorem 2.4 we have LðHÞ ¼ R.
Thus LðGÞ ¼ f0g0R ¼ LðHÞ. It follows that L does not respect completion. Later
we shall see a deeper reason: the functor L is a right adjoint and the completion func-
tor is a left adjoint.

In [2] it was shown that for any locally compact abelian group G one has
Ga ¼ expLðGÞ (see [2, p. 389, Theorem 8.30(ii)]) and that for a compact abelian group
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G, the factor group G=Ga, as an abstract abelian group, is isomorphic to ExtðĜG;ZÞ
(see loc. cit. (iii)). In the case of the p-adic solenoid Tp of Example 1.20(A)(ii) we
have LðTpÞGR, and expTp

: LðTpÞ ! Tp is injective. Thus ðTpÞa is a copy of R
endowed with a properly coarser topology. By the preceding proposition we have
RGLðTpÞ ¼ LððTpÞaÞ. In particular, ðTpÞa is a topological group with a Lie algebra
by Theorem 2.3, and its Lie algebra is R.

It should be clear that, in the spirit of universal topological algebra, a topological

Lie algebra is a real Lie algebra L which is at the same time a Hausdor¤ topological
space such that scalar multiplication R�L! L, addition L�L! L and Lie bracket
½� ; �� : L� L ! L are continuous.

Definition 3.6. The category of topological Lie algebras and continuous Lie algebra
morphisms is denoted by LIEALG.

Proposition 3.7. (i) The category LIEALG of topological Lie algebras is complete,
that is, has all limits.

(ii) The functor L : TOPGR ! SCAL maps the category LIEALGGR of topo-

logical groups with Lie algebras into the category LIEALG of topological Lie alge-

bras.

Proof. Part (i) is a straightforward exercise showing that LIEALG has products and
equalizers.

(ii) If G is a topological group with a Lie algebra, then by Definition 2.11,
LðGÞ A obðSCALÞ is a topological Lie algebra and thus belongs to the subcate-
gory LIEALG. Now let f : G ! H be a LIEALGGR-morphism. We know that
Lð f Þ : LðGÞ ! LðHÞ is a SCAL-morphism. We must show that for X ;Y A LðGÞ we
have f ðX þ Y Þ ¼ f ðX Þ þ f ðY Þ and f ½X ;Y � ¼ ½ f ðX Þ; f ðY Þ�.

Firstly we deal with addition. By 2.11(4) we have

ðX þ Y ÞðtÞ ¼ lim
n!y

ðXðt=nÞY ðt=nÞÞn:

Since f is continuous and a group morphism we have

Lð f ÞðX þ Y ÞðtÞ ¼ f ððX þ Y ÞðtÞÞ ¼ lim
n!y

ð f ðXðt=nÞÞ f ðYðt=nÞÞÞn

¼ lim
n!y

1

n
� ð f � XÞ 1

n
� ð f � Y Þ

� �n

ðtÞ ¼ ðLð f ÞðX Þ þ Lð f ÞðY ÞÞðtÞ:

Next we treat the Lie bracket. By 2.11(5) we have

½X ;Y �ðt2Þ ¼ lim
n!y

commðXðt=nÞ;Yðt=nÞÞn
2

:

Accordingly, we get this time
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Lð f Þ½X ;Y �ðt2Þ ¼ f ð½X ;Y �ðtÞÞ ¼ lim
n!y

commð f ðXðt=nÞÞ; f ðYðt=nÞÞÞn
2

¼ lim
n!y

comm
1

n
� ð f � XÞ; 1

n
� ð f � Y Þ

� �n2

ðt2Þ

¼ ½Lð f ÞðXÞ;Lð f ÞðY Þ�ðt2Þ:

Thus Lð f Þ is a Lie algebra morphism, and the proof of the proposition is complete.

The largest category of topological groups which has a Lie theory is the full sub-
category LIEGR of TOPGR of topological groups which have a Lie algebra. The
next theorem shows that this is a complete category and that the Lie algebra functor
defined on it preserves limits. In the end, the ‘right’ category for Lie theory is a com-
plete full subcategory of LIEGR, for which there are many candidates.

Theorem 3.8 (The Completeness Theorem of the Category of Groups with Lie Alge-
bras).

(i) The category LIEALGGR of topological groups having a Lie algebra is closed

in the category TOPGR of topological groups under the formation of arbitrary limits

and passage to closed subgroups. In particular, LIEALGGR is a complete category.
The full subcategory LIEALGGENGR of all topological groups have a generating

Lie algebra is closed under the formation of arbitrary products and passage to retracts.
(ii) The functor L : LIEALGGR ! LIEALG is continuous, i.e. preserves all

limits.

Proof. Once it is shown that LIEALGGR is closed under the formation of limits,
from Theorem 3.3 and Proposition 3.7 we conclude that

L : LIEALGGR ! LIEALG

is a continuous functor. Thus, by [3], Theorem 1.11(ii) it su‰ces to show that
LIEALGGR and LIEALGGENGR are closed under the formation of products
and the passing to closed subgroups in TOPGR.

Products: Let fGj j j A Jg be a family of topological groups and P ¼def Q
j A J Gj its

product. From Theorem 3.2 we know that we can write

L
�Y

j A J

Gj

�
¼

Y
j A J

LðGjÞ

such that

expPðXjÞj A J ¼ ðexpGj
XjÞj A J :

Since each LðGjÞ is a topological Lie algebra, so is
Q

j A J LðGjÞ. Moreover,
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ðXjÞj A J þ ðYjÞj A J ¼ ðXj þ YjÞj A J ¼ lim
n!y

1

n
� Xj

1

n
� Yj

� �n� �
j A J

¼ lim
n!y

1

n
� ðXjÞj A J

1

n
� ðYjÞj A J

� �n

:

This shows that condition 2.11(i)(4) holds. Analogously one proves condition
2.11(i)(5). One observes straightforwardly that

�Y
j A J

Gj

�
0
¼

Y
j A J

ðGjÞ0 and E
�Y

j A J

Gj

�
¼

Y
j A J

EðGjÞ

and concludes readily from these facts that LIEALGGENGR is closed in TOPGR
under the formation of products.

Passage to closed subgroups: Let H be a closed subgroup of G. We may assume
that LðHÞJLðGÞ, as every one parameter subgroup of H may be considered as one
of G. The relations

ðX þ Y ÞðtÞ ¼def
lim
n!y

ðXðt=nÞYðt=nÞÞn; ð*Þ

½X ;Y �ðt2Þ ¼def
lim
n!y

commðX ðt=nÞ;Y ðt=nÞÞn
2

ð**Þ

and X þ Y ; ½X ;Y � A LðHÞ hold as they hold in G and since H is closed. Thus H is a
topological group with Lie algebra and thus belongs to LIEALGGR.

Retracts: Let p : G ! H be a retraction in TOPGR, i.e. there is a morphism
j : H ! G in TOPGR such that pj ¼ idH . There is no loss in generality in assum-
ing that H is a subgroup of G and that j : H ! G is the inclusion map (cf. E1.5),
and since H is a retract, it is in fact a closed subgroup. Assume that G belongs to
LIEALGGENGR. Then H belongs to LIEALGGR by the preceding arguments.
Functors preserve retractions and coretractions; specifically, LðpÞ : LðGÞ ! LðHÞ
is a retraction with LðpÞ � Lð jÞ ¼ LðpjÞ ¼ LðidHÞ ¼ idLðHÞ. Thus LðHÞ is a retract
of LðGÞ. We notice that pðEðGÞÞJEðHÞ. Hence, if G A obLIEALGGENGR,
then pðG0Þ ¼ pðEðGÞÞJEðHÞ. Now pjH ¼ pj ¼ idH , whence H0 ¼ pðH0ÞJ pðG0Þ.
Thus H0 JEðHÞJH0, and equality follows. Thus LIEALGGENGR is closed in
TOPGR under passing to retracts, and this completes the proof.

In the above proof we used the fact that a retraction p : G ! H of topological

groups maps G0 onto H0. This is a special situation for retractions. In general, even
quotient maps between locally compact abelian groups fail to map components onto
components. In [2, p. 19, E1.11] one finds a quotient morphism Zp �R ! Tp; the
identity component of the domain is f0g�R and the p-adic solenoid Tp is connected.
(This is only a special case of a general theorem on abelian topological groups: see [2,
p. 379, Theorem 8.20].) We also recall that there are examples of additive groups of
separable Banach spaces G having closed arcwise connected subgroups H with zero
Lie algebra (cf. [2, p. 337, Exercise E7.17]). Then G is in LIEALGGENGR while

Sophus Lie’s third fundamental theorem and the adjoint functor theorem 125

Unauthenticated
Download Date | 5/29/16 12:55 AM



H is not. Since G and G=H are in LIEALGGENGR the subgroup H, as a kernel,
is a limit. Thus the category LIEALGGENGR is not closed under the passage to
all limits and thus fails to be complete.

The category LIEGR of Lie groups, which by Theorem 2.2 is a subcategory of
LIEALGGR, has finite products and equalizers, hence finite limits. Theorem 2.25
shows that all limits, in particular, arbitrary products and projective limits of Lie
groups, are topological groups with Lie algebras.

4 The Lie Algebra functor has a left adjoint

We recall that a functor U : A ! B is said to have a left adjoint F : B ! A if
there is a natural transformation hB : B ! UðFðBÞÞ such that for each morphism
f :B!UðAÞ in B there is a unique morphism f 0 : F ðBÞ!A such that f ¼Uð f 0Þ �hB.
In diagram form:

B A

B ���!hB
UðF ðBÞÞ

Ef

???y
???yUð f 0Þ

UðAÞ ���!
idUðAÞ

UðAÞ

FðBÞ???yb! f 0

A

ð>Þ

For details we refer to any text on category theory or to [2, Appendix 3]. The re-
lation between the two adjoint functors may be expressed by saying that there is a
natural bijection between the sets BðB;UðAÞÞ and AðFðBÞ;AÞ. In fact, in our nota-
tion, the bijection is implemented by the function f 7! f 0 and its inverse

g 7! UðgÞ � hB : AðFðBÞ;AÞ ! BðB;UðAÞÞ:

The natural transformation h is called the front adjunction. There is, dually, a back

adjunction pA : F ðUðAÞÞ such that for each morphism g : FðBÞ ! A there is a unique
morphism g 0 : B ! UðAÞ such that g ¼ pA � F ðg 0Þ (see for instance [2, p. 719, Prop-
osition A3.36]).

B A

UðAÞ

b!g 0

x???
B

FðUðAÞÞ ���!pA
A

Fðg 0Þ

x???
x???Eg

FðBÞ ���!
idFðBÞ

FðBÞ

Among the characteristic properties of adjunctions the following one will be rele-
vant in the present context:

if B is an object in B, then pFðBÞ � F ðhBÞ : F ðBÞ ! FðBÞ is the identity map of the A-
object FðBÞ.
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Similarly,

if A is an object of A, then UðpAÞ � hUðAÞ : UðAÞ ! UðAÞ is the identity map of the B-
object UðAÞ.

(See for instance [2, p. 719, Proposition A3.38].)
The crucial categorical theorem that we invoke is the Adjoint Existence Theorem.

First we give the relevant definition:

Definition 4.1 (The Solution Set Condition). The functor U : B ! A satisfies the
solution set condition if for each A A obA there is a set SðAÞ of pairs ðj;MÞ,
j : A ! UM such that for every pair ð f ;BÞ, f : A ! UB there is some ðj;MÞ A SðAÞ
with some factorization f ¼ ðUf0Þj and f0 : M ! B.

Now we can formulate one of the basic results in category theory:

Theorem 4.2 (The Adjoint Functor Existence Theorem). Assume that B is a complete

category. Then for a functor U : B ! A the following conditions are equivalent:

(1) U has a left adjoint F : A ! B;

(2) U preserves limits and satisfies the solution set condition.

Most sources on category theory present a proof; cf. also [2, p. 728, Theorem
A3.60].

In checking the concrete occurrences of the situation of the Adjoint Functor Exis-
tence Theorem one observes that the Solution Set Condition practically never causes
problems, and all the other conditions are readily verified, and we shall see this here.

In dealing with topological groups, we find the following a very useful first appli-
cation of the Adjoint Functor Existence Theorem:

Theorem 4.3 (The Retraction Theorem for Full Closed Subcategories of TOPGR).
For any full subcategory G of the category TOPGR of topological groups and contin-
uous morphisms that is closed in TOPGR under the formation of products and under

the passage to closed subgroups, there is a left adjoint functor

F : TOPGR ! G

which agrees on G (up to a natural isomorphism) with the identity functor on G. In
particular given any topological group G, there exist a topological group FG in G and a

morphism yG : G ! FG with dense image having the following universal property: for
every morphism f : G ! H into a G-group H there is a unique morphism f 0 : FG ! H

such that f ¼ f 0 � yG.

Proof. The existence of F is immediate from Theorem 4.3 once we verify the solution
set condition for the inclusion functor G ! TOPGR. Let G be a topological group.
Let us say that morphisms jj : G ! Mj, j ¼ 1; 2 in TOPGR are equivalent, if there
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is an isomorphism c : M1 ! M2 such that j2 ¼ c � j1. From each equivalence class
of morphisms j : G ! M such that M ¼ jðGÞ and M is a topological group in G, let
us pick one representative. Let us call the class of all such representatives SðGÞ. Then
SðGÞ is a set, because there is, up to equivalence, only a set of images jðGÞ under any
morphism j with domain G and a set of topologies on each jðGÞ and that there is up
to a natural equivalence (in an obvious sense) a set of Hausdor¤ topological spaces
in which a topological space jðGÞ is dense, since the cardinal of such a space is not
bigger than the cardinal of the set of all filters on jðGÞ. Now let f : G ! H be a mor-
phism from G to a topological group H in G. Since G is closed under passing to closed
subgroups, f ðGÞ belongs to this category. Thus the corestriction f 0 : G ! f ðGÞ of f

to the closure of its image has an equivalent representative in SðGÞ. For brevity we
may assume that f 0 ASðGÞ. Let f0 : f ðGÞ!H be the inclusion map. Then f ¼ f0 � f 0.
Thus the solution set condition for the inclusion functor G ! TOPGR is verified.

It remains to verify that yG has dense image; but that is immediate from the as-
sumption that G is closed under passing to closed subgroups and that the corestric-
tion G ! yGðGÞ of yG to the closure of its image has the universal property of yG and
thus must agree with yG.

TOPGR G

G ���!yG
FG

Ef

???y
???y f 0

H ���!
idH

H

FG???yb! f 0

H

A typical example for G is the category COMPGR of compact groups. In that
case for each topological group G, the compact group aðGÞ ¼def

FG is the Bohr com-

pactification of G and yG : G ! aðGÞ is the Bohr compactification morphism.
Another example is the category ABTOPGR of topological abelian groups. Then

FG is the commutator factor group G=G 0 where G 0 is the algebraic commutator group.
A further relevant example is this:

Corollary 4.4. Let CTOPGR denote the full subcategory of complete topological

groups. Then there is a functor G 7! G� : TOPGR ! CTOPGR such that given

any topological group G, there exist a complete topological group G � and a mor-

phism kG : G ! G � with dense image, such that for every morphism f : G ! H into

a complete topological group H there is a unique morphism f 0 : G� ! H such that

f ¼ f 0 � kG.

TOPGR CTOPGR

G ���!kG
G �

Ef

???y
???y f 0

H ���!
idH

H

G �???yb! f 0

H
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Proof. This is an immediate consequence of the completeness of the subcategory
CTOPGR and Theorem 4.3.

One should remember that k will not always be an embedding. We say that a to-
pological group G has a completion if kG : G ! G � is an embedding, in which case we
like to consider G as a dense subgroup of G �.

The final appropriate example in our situation is the following:

Corollary 4.5. There is a functor l : TOPGR ! LIEALGGR such that given any

topological group G, there exist a topological group lðGÞ with Lie algebra and a mor-

phism yG : G ! lðGÞ with dense image, such that for every morphism f : G ! H into

a topological group H with Lie algebra, there is a unique morphism f 0 : lðGÞ ! H such

that f ¼ f 0 � yG.

TOPGR LIEALGGR

G ���!yG
lðGÞ

Ef

???y
???y f 0

H ���!
idH

H

lðGÞ???yb! f 0

H

Proof. This is an immediate consequence of the completeness of the subcate-
gory LIEALGGR and Theorem 4.3.

The major application of the Adjoint Functor Existence Theorem, however in the
present context is the following:

Theorem 4.6 (The Adjunction Theorem for L). (i) The functor

L : LIEALGGR ! LIEALG

has a left adjoint

G : LIEALG ! LIEALGGR:

In other words, the following assertions hold:
(i 0) For each topological Lie algebra g there is a functorially associated topological

group GðgÞ with a Lie algebra and there is a natural transformation hg : g ! LðGðgÞÞ
such that for each morphism f : g! LðHÞ of topological Lie algebras, there is a unique

morphism f 0 : GðgÞ ! H such that f ¼ Lð f 0Þ � hg. In diagram form,

LIEALG LIEALGGR

g ���!hg
LðGðgÞÞ

Ef

???y
???yLð f 0Þ

LðHÞ ���!
idLðHÞ

LðHÞ

GðgÞ???yb! f 0

H

ð>Þ
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(i 00) Let G be a group with a Lie algebra. Set ~GG ¼def
GðLðGÞÞ. Then there is a natural

transformation pG : ~GG ! G such that for each topological Lie algebra g and each mor-
phism f : GðgÞ ! G there is a unique morphism f 0 : g! LðGÞ of topological Lie alge-
bras such that f ¼ pG � Gð f 0Þ.

LIEALG LIEALGGR

LðGÞ

b! f 0

x???
h

~GG ���!pG
G

Gð f 0Þ

x???
x???Ef

GðhÞ ���!
idGðhÞ

GðhÞ

ð?Þ

(ii) The group GðgÞ has a generating Lie algebra and is therefore a member of

LIEALGGENGR. Thus G maps LIEALG into LIEALGGENGR.
(iii) For a topological Lie algebra g, abbreviate GðgÞ to G. Then there are two inverse

isomorphisms

pG : ~GG ! G and GðhgÞ : G ! ~GG:

Proof. (i) The proof is almost pure category theory; we will use the core existence
result for adjoint functors which we have already invoked in the proof of Theorem
4.3. By the Left Adjoint Existence Theorem (see for instance [2, Appendix 3, p. 728,
Theorem A3.60]), we have to verify that L satisfies the Solution Set Condition 3.1,
which in our case reads as follows: for each topological Lie algebra g, there is a set

SðgÞ (and not a proper class) of pairs ð f ;HÞ, where f : g ! LðHÞ is a morphism of
topological Lie algebras, such that for any pair ðF ;KÞ, F : g ! LðKÞ, there exist a
pair ð f ;HÞ A SðgÞ and a morphism f0 : H ! K such that F ¼ Lð f0Þ � f .

As is usual in such a situation, this condition is verified by establishing cardinality
estimates.

(a) There is, up to equivalence, only a set of homomorphic surjective homomor-
phisms f : g ! h of topological Lie algebras since there are cardinality bounds on the
set of closed ideals i of g and the set of topologies on each quotient g=i.

(b) Given a Hausdor¤ topological space T there is a cardinality bound on all
equivalence classes of dense embeddings of T into some Hausdor¤ space ~TT , because
there is a cardinality bound on the set of all filters on T , and because every point in a
space ~TT , in which T is contained densely, is the limit of a filter on T .

(c) Given a topological Lie algebra h, there is, up to equivalence, only a set of con-
tinuous functions e : h ! S onto a Hausdor¤ space S up to equivalence; next, there is
for each space S, up to isomorphism, at most a set of groups H which are algebra-
ically generated by S, and there is at most a set of group topologies on H. Hence
there is at most a set of topological groups H which have h as their Lie algebra and
satisfy H ¼ hexpH hi. Moreover, by (b) above, there is at most a set of Hausdor¤
topological groups in which hexpH hi is dense.

We say that two pairs ð fj;HjÞ, fj : g ! LðHjÞ, j ¼ 1; 2 are equivalent if there is an
isomorphism j : H1 ! H2 such that f2 ¼ LðjÞ � f1. Now we consider the class of all

pairs ð f ;HÞ, f : g ! LðHÞ such that H ¼ hexpHð f ðgÞÞi. The preceding cardinality

Karl H. Hofmann and Sidney A. Morris130

Unauthenticated
Download Date | 5/29/16 12:55 AM



considerations show that we have a set SðgÞ of representatives ð f ;HÞ for the equi-
valence classes of such pairs.

Now let K be a topological group with a Lie algebra and F : g ! LðKÞ a mor-
phism of topological Lie algebras. Let H ¼ hexpK f ðgÞi. Then H is a closed sub-
group of K and thus has a Lie algebra by Theorem 3.8(i). Moreover, the corestric-
tion f : g ! LðHÞ gives a pair ð f ;HÞ which is equivalent to a member of SðgÞ. If
f0 : H ! K is the inclusion morphism then F ¼ Lð f0Þ � f , and since ð f ;HÞ is equi-
valent to a member of SðgÞ, this proves that L satisfies the Solution Set Condition.
Since L is continuous by Theorem 3.3, the Left Adjoint Functor Existence Theorem
applies and proves the existence of a left adjoint functor G for L.

(i 0) and (i 00): The universal properties expressed in (i 0) and (i 00) are equivalent and
express the fact that G is a left adjoint of L. See for instance [2, p. 719, Proposition
A3.36].

(ii) This assertion is a consequence of the selection of the solution set and the con-
struction of the left adjoint functor from the solution set in the Left Adjoint Existence
Theorem; indeed, ðhg;GðgÞÞ is a member of the solution set SðgÞ.

(iii) Let g be a topological Lie algebra and set G ¼def
GðgÞ. By (ii) we have

G ¼ hexpG hgðgÞi. Now we set ~GG ¼def
GðLðGÞÞ and note that in a similar vein, we have

~GG ¼ hexp ~GG hLðGÞðLðGÞÞi. The situation is described by the following diagram:

g ���!hg
LðGÞ ���!hLðGÞ

Lð ~GGÞ

expG

???y
???yexp

G

G ���!
GðhgÞ

~GG:

Thus hexp ~GG hLðGÞðLðGÞÞi¼GðhgÞhðexpG LðGÞÞi is dense in GðhgÞðGÞ on the one hand

and in ~GG on the other. Hence GðhgÞ has a dense image. We recall from our review
preceding the theorem that pGðgÞ � GðhgÞ : GðgÞ ! GðgÞ is the identity of GðgÞ ¼ G,
that is, pG � GðhgÞ ¼ idG. We saw that the coretraction GðhgÞ has a dense image; but
then it must be surjective and thus an isomorphism whose inverse is pG.

According to this Theorem we have a natural bijection between the sets

LIEALGðg;LðGÞÞ and LIEALGGRðGðgÞ;GÞ:

One may wish to consider the adjunction theorems 4.4, 4.5 and 4.6 side by side.
If G is a topological group, then there is a left reflection lðGÞ, that is, a universally
attached topological group with a Lie algebra; its Lie algebra LðlðGÞÞ is the image
in LIEALG under a right adjoint, and GðLðlðGÞÞÞ is the image of it under the left
adjoint G. We have natural maps

G???yyG

GðLðlðGÞÞÞ ���!pG
lðGÞ:
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On the lower level we are dealing with topological groups with Lie algebras, and the
left lower corner is a group in LIEALGGENGR. The completion functor ð�Þ� can
be combined with G, giving for each topological Lie algebra g in a functorial fashion
a complete group GðgÞ ¼def

GðgÞ� with Lie algebra. By abuse of notation, one frequently
writes G in place of G and trusts that the context makes it clear what is meant.

5 Sophus Lie’s Third Fundamental Theorem

Theorem 4.6(i 00) is a very general form of Lie’s Third Theorem. This becomes more
evident if one restricts one’s attention to the class of topological Lie algebras, for
which hg : g ! LðGðgÞÞ is an isomorphism. In that case Gg realizes a group whose Lie

algebra is the given Lie algebra g. Lie algebras which are projective limits of finite-
dimensional ones are called pro-Lie algebras. In [3, Chapter 6] we show that for all
pro-Lie algebras g the morphism hg is an isomorphism.

The full subcategory proLIEGR of TOPGR consisting of all pro-Lie groups is
closed under all limits and under passage to closed subgroups in TOPGR. It is
contained in LIEALGGR. The Lie algebras of pro-Lie groups are pro-Lie algebras;
writing proLIEALG for the full subcategory of LIEALG of all pro-Lie algebras,
we obtain in [3, Chapters 6, 8] the following

Corollary 5.1. The pro-Lie algebra functor L : proLIEGR ! proLIEALG has

a left adjoint pro-Lie group functor G : proLIEALG ! proLIEGR such that

hg : g ! LGðgÞ is an isomorphism for all pro-Lie algebras g. For each pro-Lie group G

the pro-Lie group ~GG ¼def
GLðGÞ is simply connected, and whenever the underlying space

of G has a universal covering space, then the back adjunction pG : ~GG ! G is the uni-

versal covering morphism.

Thus by virtue of the left adjoint of the Lie algebra functor, pro-Lie groups satisfy
a perfect version of Lie’s Third Theorem and have a generalization of the universal
covering group even when a covering group does not exist in the topological sense.

There are Banach Lie algebras g for which hg fails to be an isomorphism. In [3] it
is shown that ~GG is homeomorphic to a product of RI for some set I and

Q
j A J Sj for

some family of simply connected simple Lie groups Sj .

6 Conclusion

The basic tools in classical Lie theory are the Lie algebra and the exponential map;
this is the case even when we are well outside the class of traditional Lie groups. In [2]
we showed that Lie theory applies to all compact groups and all locally compact
abelian groups; but it is true that it applies to all locally compact groups. However,
the category LCGR of all locally compact groups and continuous homomorphisms
is not complete as it fails to have arbitrary products. So the category we seek should
be better behaved than LCGR and should contain at least all connected locally
compact groups. In [4] we showed that the category of pro-Lie groups is a complete
subcategory of TOPGR and contains all connected locally compact groups.

Here we have shown that the full category LIEALGGR of all topological groups
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having Lie algebras is closed in the category TOPGR of all topological groups, that
the property of having a Lie algebra is preserved under passage to closed subgroups,
and that the functor L : LIEALGGR ! LIEALG assigning to a topological
group having a Lie algebra its topological Lie algebra, has a left adjoint functor
G : LIEALG ! LIEALGGR which attaches to a topological Lie algebra g in
a universal fashion a topological group G ¼def

GðgÞ. The universal property guaran-
tees that there is a natural morphism hg : g ! LðGÞ such that for any morphism
f : g ! LðHÞ of topological Lie algebras there is a unique morphism f 0 : G ! H

satisfying f ¼ Lð f 0Þ � hg. For a topological group G with Lie algebra this provides

functorially a topological group ~GG ¼def
GðLðGÞÞ and a morphism pG : ~GG ! G such that

any morphism f : GðgÞ ! G for some topological Lie algebra g factors through pG
in the form f ¼ pG � Gð f 0Þ for a unique morphism f 0 : g ! LðGÞ of topological Lie
algebras. Ostensibly, ~GG is a vast generalization of a ‘universal covering group’ of G
and pG a generalization of a universal covering morphism. But no topological hy-
potheses are needed here for the construction of ~GG. All that is required from G is that
it have a Lie algebra.

If g is a pro-Lie algebra, that is, a projective limit of finite-dimensional Lie algebras,
then hg : g ! LðGðgÞÞ is an isomorphism of topological Lie algebras; we may ‘iden-
tify’ the Lie algebra of GðgÞ with g. The existence of the functor G is therefore the

appropriate expression of Lie’s Third Fundamental Theorem saying that every pro-
Lie algebra is realized as the Lie algebra of a pro-Lie group and how this is done in a
functorially satisfactory fashion is explained in even greater generality in this paper.
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