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SUBGROUPS OF PRODUCTS OF LOCALLY
COMPACT GROUPS

DIKRAN DIKRANJAN AND SIDNEY A. MORRIS

Abstract. A topological group G is said to be locally q-
minimal if there exists a neighbourhood V of the identity of
G such that whenever H is a Hausdor↵ group and f : G! H
is a continuous surjective homomorphism with f(V ) a neigh-
bourhood of 1 in H, then f is open. Locally compact groups
are locally q-minimal. It is shown that under certain circum-
stances complete locally q-minimal groups are locally com-
pact. This occurs for subgroups of products of locally com-
pact groups in two cases: a) for products of locally compact
abelian groups; b) for connected subgroups of products of lo-
cally compact MAP groups. It is also shown that “MAP”
cannot be removed.

1. Introduction

Throughout this note all topological groups are assumed to be
Hausdor↵, unless otherwise stated explcitly. Occasionally for em-
phasis we shall explicitly state that a certain space is Hausdor↵.
We denote by V(G,⌧)(1) (or simply by V⌧ (1) or VG(1) when no con-
fusion is possible) the filter of neighbourhoods of 1 in a topological
group (G, ⌧).

Minimal topological spaces have been extensively studied in the
literature ([2]). Minimal topological groups were introduced by
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Choquet and Stephenson [7, 15] (see [3, 6] for recent advances in
this field).

The following interesting generalization of minimality was
recently introduced by Morris and Pestov [11]:

Definition 1.1. A topological group (G, ⌧) is said to be locally
minimal if there exists a neighbourhood of the identity V such that
whenever � ✓ ⌧ is a Hausdor↵ group topology on G such that V
has a non-empty �-interior, then � = ⌧ .

In the sequel we use the following equivalent form of local
minimality: a topological group (G, ⌧) is locally minimal if and
only if there exists a ⌧ -neighbourhood of the identity V such that
whenever � ✓ ⌧ is a Hausdor↵ group topology on G such that V
is a �-neighbourhood of 1, then � = ⌧ . We show below that all
locally compact groups are locally minimal. While local compact-
ness is preserved under taking quotient groups, this fails for
minimality. The minimal groups which have all their Hausdor↵
quotients minimal are called totally minimal ([5]; some authors
prefer the term q-minimal). Motivated by this idea, we introduce
here a notion with similar properties with respect to local minimal-
ity.

Definition 1.2. A topological group G is said to be locally
q-minimal with respect to a neighbourhood V of the identity of G if
whenever H is a Hausdor↵ group and f : G ! H is a continuous
surjective homomorphism such that f(V ) is a neighbourhood of 1
in H, then f is open.

Often we say briefly G is locally q-minimal if there exists such
a neighbourhood V . It is easy to see that a topological group G
is locally q-minimal with respect to some neighbourhood V of 1 if
and only if for every closed normal subgroup N of G the quotient
group G/N is locally minimal with respect to the neighbourhood
(V N)/N of 1 in G/N . We give an example to distinguish local
minimality and local q-minimality in 2.10 and we show that locally
compact groups are actually locally q-minimal (cf. Lemma 2.8). In
Proposition 2.7 we extend a result from [11] by showing that every
subgroup of a Lie group is locally q-minimal.
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Infinite products of locally compact (abelian) groups need not be
locally compact. Closed subgroups of such products are necessarily
complete.

Theorem 1.3. A closed subgroup of a product of locally com-
pact abelian groups is locally compact if and only if it is locally
q-minimal.

In other words, the complete locally q-minimal abelian groups
that are closed subgroups of the products of locally compact abelian
groups are precisely the LCA groups.

In the non-abelian case we can prove the following:

Theorem 1.4. A closed connected subgroup of a product of locally
compact MAP groups is locally compact if and only if it is locally
q-minimal.

Example 1.5. One cannot remove “MAP” in the above theorem
since the group G = SL2(R)! is totally minimal (hence, locally
q-minimal) by a theorem of Stoyanov-Remus [13] (see also [6, Corol-
lary 7.4.4]), but not locally compact.

We do not know whether local q-minimality can be replaced by
the weaker assumption of local minimality in Theorems 1.3 and 1.4.
We can see that this is true for products of locally compact abelian
groups (instead of just subgroups of products).

Theorem 1.6. For an infinite family {Gi}i2I of locally compact
abelian groups the following properties are equivalent:

(a) the product
Q

i2I Gi is locally minimal;
(b) the product

Q
i2I Gi is locally compact.

The proofs of these three theorems are given in §3. In §2 we
establish some useful properties of the locally (q-) minimal groups.

1.1. Notations and terminology
In what follows all group topologies are assumed to be Hausdor↵.

For a topological group G we denote by eG the Răıkov completion
of G and by c(G) the connected component of the identity of G.

We recall here some compactness-like conditions on a topological
group G. A group G is said to be precompact (some authors prefer
“totally bounded”) if eG is compact.
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The subgroup generated by a subset X of a group G is denoted
by hXi, and hxi is the cyclic subgroup of G generated by an element
x 2 G.

We denote by N and P the sets of positive integers and prime
numbers, respectively; by Z the integers, by Q the rational numbers,
by R the real numbers, and by T the unit circle group which is
identified with R/Z. The cyclic group of order n > 1 is denoted
by Z(n). For a prime p the symbol Z(p1) denotes the quasicyclic
p-group and Zp the p-adic integers.

The torsion part t(G) of an abelian group G is the set
{g 2 G : ng = 0, for some n 2 N}. Clearly, t(G) is a subgroup of G.
For a prime p, the p-primary component Gp of G is the subgroup
of G that consists of all x 2 G satisfying pnx = 0, for some positive
integer n. The group G is said to be divisible if nG = G for every
n 2 N.

All unexplained topological terms can be found in [8]. For back-
ground on abelian groups, see [9] and [14].

2. Local minimality vs minimality

Here we establish properties of the locally q-minimal groups
necessary for the proof of our main theorems. They may be of
independent interest.

Lemma 2.1. If the topological group G is locally q-minimal, then
every quotient group of G is locally q-minimal.

Proof. Let V 2 VG(1) witness local q-minimality of G. Consider a
quotient homomorphism f : G ! G/N . Then f(V ) is a neighbour-
hood of 1 in G/N that witnesses local q-minimality of G/N . ⇤

Now we give a canonical construction of an extension e� of a group
topology � defined on a closed central subgroup H of a group G.

Lemma 2.2. Let G be a topological group with topology ⌧ and let
H be a closed central subgroup of G. Then every group topology �
on H with �  ⌧ |H extends to a group topology e� of G such that
e�  ⌧ . Moreover,

(a) if H is ⌧ -open, then H is also e�-open;
(b) if ⌧ 0  ⌧ is a group topology on G such that ⌧ 0|H  �, then

⌧ 0  e�.
(c) if � is Hausdor↵, then e� is also Hausdor↵;
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(d) if for some neighbourhoods V0, V of 1 in G, H ·V0 is contained
in V , then V is also a e�-neighbourhood of 1 in G.

Proof. Let e� be the group topology on G with base of neighbour-
hoods of 1 consisting of all possible products U · V , where U is
a �-neighbourhood of 1 in H and V is a ⌧ -neighbourhood of 1.
Obviously, e�|H  � and e�  ⌧ . To show that e� extends � take a
neighbourhood U of 1 in (H,�). Then there exists a neighbourhood
W of 1 in (H,�) such that W 2

✓ U . Now find a neighbourhood O
of 1 in (G, ⌧) such that O \H = W . Then W ·O \H ✓ U , so U is
a neighbourhood of 1 in (H, e�|H) too. This proves e�|H = �.

(a) is obvious.
(b) Assume ⌧ 0  ⌧ is a group topology on G such that ⌧ 0|H  �.

Let B be a neighbourhood of 1 in (G, ⌧ 0). Then there exists a
neighbourhood A of 1 in (G, ⌧ 0) with A2

✓ B. By our assumptions
on ⌧ 0 there exist U 2 V(H,�)(1) and O 2 V(G,⌧)(1) with U ✓ H \ A
and O ✓ A. Then U · O ✓ B, hence B 2 V(G,e�)(1).

(c) Since H is closed the intersection
T
{U · V : U 2 V(H,�)(1),

V 2 V(G,⌧)(1)} coincides with
T
{U : U 2 V(H,�)(1)} ✓ H. Since �

is Hausdor↵, this intersection is {1}.
(d) This is obvious. ⇤

Lemma 2.3 reveals the connection between “locally minimal” and
“minimal” (in the sense that “su�ciently small” subgroups of a
locally minimal group are minimal). This is an important step
in our proof since minimality implies precompactness for abelian
groups, due to a well known deep theorem of Prodanov and Stoy-
anov [12].

Lemma 2.3. Let G be a locally minimal group with respect to a
neighbourhood V of 1. If H is a closed central subgroup of G, such
that H · V0 ✓ V for some neighbourhood V0 of 1 in G, then H is
minimal.

Proof. Let ⌧ denote the topology of G. To show that (H, ⌧ |H) is
minimal pick a Hausdor↵ group topology �  ⌧ |H on H. Then
the extension e� of � defined as in the previous lemma is coarser
than ⌧ and V is a e�-neighbourhood of 1. Hence e� = ⌧ by the local
minimality of ⌧ with respect to V . Thus � = e�|H = ⌧ |H . This
proves that (H, ⌧ |H) is minimal. ⇤
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The next lemma and corollary justify the name “locally minimal”
(see also Example 2.6).

Lemma 2.4. Let G be a topological group that admits an open
subgroup H that is locally minimal as a topological subgroup of G.
Then G is locally minimal.

Proof. Let ⌧ be the topology of G. Since H is open in G there exists
a ⌧ -open neighbourhood V of 1 in H witnessing local minimality of
H. Let us see that V witnesses local minimality of G too. Indeed,
assume � ✓ ⌧ is a Hausdor↵ group topology on G such that V is
�-open. Since H is locally minimal and V 2 V(H,�|H), the identity
idH : (H, ⌧ |H) ! (H,�|H) is a homeomorphism. Since H is open
in both ⌧ and �, we conclude that idH is a local homeomorphism,
thus it is a homeomorphism. ⇤
Corollary 2.5. Let G be a topological group that admits an open
subgroup H that is minimal as a topological subgroup of G. Then
G is locally minimal.

It is tempting to conjecture that all locally minimal groups can
be obtained in this way. The next example shows that this is not
the case in general. We show below that this is true for the linear
group topologies on arbitrary abelian groups (cf. Corollary 2.9).

Example 2.6. According to [11] every subgroup G of a Lie group
L is locally minimal (we show in the next proposition that G is
actually locally q-minimal).

(a) R is locally minimal (being a Lie group), but no open sub-
group of R is minimal. More generally, a locally compact
abelian group G has an open minimal subgroup if and only
if G has an open compact subgroup (and consequently, G
has no vector subgroups). Indeed, if H is an open minimal
subgroup of G, then H is locally compact. By Stephenson’s
theorem [15] H must be compact. We show below that ev-
ery locally compact group is locally minimal. Hence, this
example shows how large the gap is between local minimal-
ity and the su�cient property given in Corollary 2.5 in the
class of locally compact abelian groups.

(b) For a non-locally-compact example consider the subgroup
G = Z(p1) of T. Then G is locally q-minimal by the next
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proposition, but G has no proper open subgroups and G it-
self is not minimal. Thus G has no open minimal subgroup.
An analogous argument shows that any dense embedding of
Z in T induces a locally q-minimal topology on Z without
open minimal subgroups.

Proposition 2.7.Every subgroup of a Lie group is locally q-minimal.

Proof. Let G be a subgroup of a Lie group L. Since closed sub-
groups of a Lie group are Lie groups, we can assume that G is
dense in L. To see that G is locally q-minimal, consider a quotient
G/N of G, where N is a closed normal subgroup of G. In view
of the result in [11] quoted in Example 2.6 it su�ces to see that
G/N is isomorphic to a subgroup of a quotient of L. Let N be the
closure on N in L. Then N is a closed normal subgroup of L by
the density of G in L. Since N = N \ G is dense in N , it follows
from [6, Lemma 4.3.2] that the restriction f |G : G ! f(G) of the
(open) quotient map f : L ! L/N is still open, where f(G) carries
the induced from L topology. This means that the subgroup f(G)
of the quotient group L/N has the quotient topology with respect
to f |G. Since ker f \G = N , this proves that the quotient G/N is
isomorphic to the subgroup f(G) of L/N . It remains to note that
the quotient G/N is a isomorphic to a subgroup of a Lie group,
hence G/N is locally minimal. ⇤
Lemma 2.8. Every locally compact group is locally q-minimal.

Proof. Let (G, ⌧) be a locally compact group and let V 2 V⌧ (1)
be a compact neighbourhood of 1. First we shall check that G is
locally minimal with respect to V . Assume � ✓ ⌧ is a Hausdor↵
group topology on G such that V a �-neighbourhood of 1. Since V
is ⌧ -compact, the identity idV : (V, ⌧ |V ) ! (V,�|V ) is a homeomor-
phism. We conclude as in Lemma 2.4. Now let G/N be a quotient
group of G. Then U = (V ·N)/N is a compact neighbourhood of 1
in G/N . Hence the above argument shows that G/N is locally min-
imal with respect to U . Then G is locally q-minimal with respect
to V . ⇤
Corollary 2.9. Let G be a linearly topologized abelian group. Then
G is locally minimal if and only if G has an open minimal subgroup.

Proof. Since by hypothesis VG(1) has a base of open subgroups, we
can assume without loss of generality that local minimality of G is
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witnessed by an open subgroup V of G. Then V = V · V so that,
by Lemma 2.3, V is a minimal subgroup of G. ⇤
Example 2.10. Let c be a topological generator of the compact
monothetic group K =

Q
p Zp. Consider the subgroups N =

Q
p pZp

and G = hci + N of K. Then G is dense and minimal by the
Minimality Criterion [6], but for the closed subgroup N of K the
quotient group G/N ⇠= hci is not locally minimal as it has no open
subgroup that is minimal (cf. Corollary 2.9).

3. Proof of the main theorems

The proof of Theorem 1.3 is based on the following lemma con-
cerning a “varietal” property of LCA groups.

Lemma 3.1. An LCA group G having an open compact subgroup
is topologically isomorphic to a closed subgroup of a product T�

⇥D,
where � is a cardinal and D is a discrete abelian group.

Proof. Let G be a LCA group having a compact open subgroup
of K. Then there exists an embedding ⌫ : K ! T� for some
cardinal �. Since T� is divisible ⌫ can be extended to a homo-
morphism e⌫ : G ! T� which is necessarily continuous since K is
open in G and the restriction ⌫ of e⌫ to K is continuous. Let
h : G ! G/K be the canonical homomorphism to the (discrete)
quotient group D = G/K. Then the homomorphism g =
h

e⌫, hi : G ! T�
⇥ D is continuous, as a cartesian product of two

continuous homomorphisms. Moreover, N = ker e⌫ intersects K in
0 since ⌫ is injective. Therefore, g is a continuous monomorphism
of G into T�

⇥ D. Since its restriction to the open subgroup K
coincides with the embedding ⌫ : K ! T�, we conclude that g is
an embedding too. ⇤

For convenience we give the following corollary obtained by the
simple observation that according to the lemma and the structure
theory of LCA groups (cf. [10, 24.30]), every LCA group is a
(closed) subgroup of some product Rn

⇥ T�
⇥ D, where D is a

discrete abelian group.

Corollary 3.2. A closed subgroup of a product of locally com-
pact abelian groups is isomorphic to a closed subgroup of a product
R↵
⇥T�

⇥

Q
i2I Di, where ↵, � are cardinal numbers and Di, i 2 I,

are discrete abelian groups.
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In other words, the class SC(LCA) = SC(R, T, all discrete
abelian groups), where S and C respectively denote the forma-
tion of all closed subgroups and the formation of all (cartesian)
products, while LCA here denotes the class of all locally compact
abelian groups.

Proof of Theorem 1.3. Let G be a closed subgroup of a product
of LCA groups. Then by Corollary 3.2 G can be considered as
a closed subgroup of a group K = R↵

⇥ T�
⇥

Q
i2I Di for some

cardinal numbers ↵, � and discrete abelian groups Di, i 2 I. Since
local compactness implies local q-minimality (Lemma 2.8), we have
to prove that G is LCA if it is locally q-minimal. Let V be a
neighbourhood of 0 in G witnessing local q-minimality of G. We
can assume without loss of generality that there exist finite sets
F ⇢ ↵, F 0

✓ � a cofinite set J ✓ I and " > 0 such that V = G\W ,
where

W = [(�", ")F
⇥ R↵\F ]⇥ [O" ⇥ T�\F 0

]⇥
Y

i2J

Di,

with O" the "-ball with center 0 and radius " in TF 0 . Let N0 =
R↵\F

⇥ T�\F 0
⇥

Q
i2J Di. (We suppress any symbols for trivial

factors such as {0}I\J .) Clearly, N0 is a closed subgroup of K with
N0 + W = W . Then N = G \ N0 is a closed subgroup of G with
N + V ✓ V . By Lemma 2.3 the subgroup N of G is minimal,
hence precompact by Prodanov–Stoyanov’s theorem [12]. On the
other hand, N is a closed subgroup of K and hence complete. This
proves that the subgroup N is compact. Consider the quotient
homomorphism f : G ! K/N0

⇠= RF
⇥ TF 0

⇥ D, where D =Q
i2I\J Di. Since F, F 0 and I \ J are finite, D is discrete and K/N0

is locally compact. Let us see now that f(V ) is a neighbourhood of 0
in f(G). Indeed, U = f(W )\f(G) is clearly a neighbourhood of 0 in
f(G), so it su�ces to prove that U = f(V ). The inclusion f(V ) ✓ U
is obvious. If u = f(g) = f(w) for some g 2 G and w 2 W , then
g�w 2 N0, so that g 2 w+N0 ✓ W +N0 = W and now V = G\W
implies g 2 V . Hence u 2 f(V ). By local q-minimality of G the
restriction f : G ! f(G) is open, i.e., f(G) ⇠= G/N . Now f(G)
is locally precompact as a subgroup of the locally compact group
K/N0, hence G must be locally precompact too, since N is compact.
By the completeness of G we conclude that G is LCA.
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Proof of Theorem 1.4. Assume that G is a closed connected
subgroup of a product

Q
i2I Li, where each Li is a locally com-

pact MAP group. It is not restrictive to assume that each Li is
connected, otherwise one can replace Li by the closure of the pro-
jection of G into Li. By Freudenthal-Weyl theorem Li = Rni

⇥Ki,
where Ki is a compact (connected) group. Let U =

Q
n U(n), where

U(n) is the group of unitary n ⇥ n matrices over C. Then G is a
closed subgroup of a product K = R↵

⇥ U�. Arguing as in the
above proof find finite sets F ✓ ↵, F 0

✓ � and " > 0 such that
for W = [(�", ")F

⇥ R↵\F ] ⇥ [O" ⇥ U�\F 0 ], where O" is the "-ball
with center 1 and radius " in UF 0 , V = G \W witnesses local q-
minimality of G. Let N0 = R↵\F

 K and note that N0 is a closed
central subgroup of K with N0 · W = W . Then N = G \ N0 is a
closed central subgroup of G with N · V  V . By Lemma 2.3 N
is minimal. Being abelian, N is precompact. Since K is complete,
N is complete too. Thus N is compact. As before, the quotient
homomorphism f : K ! K/N0

⇠= RF
⇥ U� sends G to a closed

subgroup H = f(N) of K/N0 and f(V ) is a neighbourhood of 1
in f(G) (checked as before). This gives H ⇠= G/N by the local q-
minimality of G. Since K/N0 is locally compact and G is complete,
this entails (as in the above proof) that G is locally compact too.
QED

Lemma 3.3. Let {Gi}i2I be a family of topological groups such
that infinitely many groups Gi are not minimal. Then the productQ

i2I Gi is not locally minimal.

Proof. Let ⌧ denote the Tychonov topology of G =
Q

i2I Gi and
assume that some V 2 V⌧ (1) witnesses local minimality. Then there
exists a finite subset J ✓ I such that V contains ker pJ , where pJ is
the projection of G on the finite subproduct

Q
i2J Gi. Now we have

to build a topology � < ⌧ such that V is still a neighbourhood of 1
in (G, �). To this end fix an index i0 2 I \J such that the group Gi0

is not minimal. This is possible in view of our hypothesis. Let �0

be a topology on Gi0 strictly weaker than the original topology of
Gi0 . Let � denote the product topology on G where all groups Gi

have their original topology except the group Gi0 that is equipped
with �0. Then V is a neighbourhood of 1 in � and � < ⌧ . ⇤
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Proof of Theorem 1.6. (b) ) (a) is trivial.
(a) ) (b) Assume that the product is not locally compact. This

means that infinitely many groups Gi are not compact. Since they
are complete (being locally compact), by Prodanov-Stoyanov’s the-
orem, infinitely many groups Gi are not minimal. Now by Lemma
3.3 the product

Q
i2I Gi is not locally minimal. QED

Acknowledgments. It is a pleasure to thank the referee for his
very careful reading and useful comments.

References

[1] B. Banaschewski, Minimal topological algebras, Math. Ann. 211 (1974),
107–114.

[2] M.P. Berri, J.R. Porter and R.M. Stephenson, Jr., A survey of
minimal topological spaces, In: “General Topology and Its Relations to
Modern Analysis and Algebra,” edited by S.P. Franklin, Z. Froĺık, and
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